Cu-Ba0.7Sr0.3TiO3 composites for electronic packaging

With the rapid growth of Electronic industries, there is an increasing demand for high-performance electronic packaging materials. In a harsher service environment, the high-temperature performance and thermal cycling stability are required to run the electronic system. In order to remove the heat g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2019-05, Vol.30 (9), p.9022-9028
Hauptverfasser: Kumar, Sanjay, Pradeepkumar, Maurya Sandeep, Dwivedi, Akansha, Ahmad, Md. Imteyaz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9028
container_issue 9
container_start_page 9022
container_title Journal of materials science. Materials in electronics
container_volume 30
creator Kumar, Sanjay
Pradeepkumar, Maurya Sandeep
Dwivedi, Akansha
Ahmad, Md. Imteyaz
description With the rapid growth of Electronic industries, there is an increasing demand for high-performance electronic packaging materials. In a harsher service environment, the high-temperature performance and thermal cycling stability are required to run the electronic system. In order to remove the heat generated in electronic systems, appropriate materials must be developed as heat sinks. In this work, we report Ba 0.7 Sr 0.3 TiO 3 nanoparticles, which were synthesized using a citrate gel method, used as reinforcements in a Cu matrix composite. These composites have shown the coefficient of thermal expansion value compatible to that of Si and GaAs at the same time having a superior thermal conductivity of 292.213 W/m K compared to SiC reinforced composites, making it a promising material for packaging applications in semiconductor industries.
doi_str_mv 10.1007/s10854-019-01231-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2200475617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2200475617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-15f39c13772623ea22c349821f1593c753adc127004922942906fcc76042bc073</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wNWA69T3XpLJZKnFLyh0YQV3IcZMmdpOxmS68N87dQR3Lh53c899cBi7RJghgL7OCJWSHNAMRwI5HrEJKi24rOj1mE3AKM2lIjplZzlvAKCUopowNd_zWwcz_ZxgJlbNUhQ-7rqYmz7koo6pCNvg-xTbxhed8x9u3bTrc3ZSu20OF785ZS_3d6v5I18sH57mNwvuSZqeo6qF8Si0ppJEcEReSFMR1qiM8FoJ9-6RNIA0REaSgbL2Xpcg6c2DFlN2Ne52KX7uQ-7tJu5TO7y0RAOlVYmHFo0tn2LOKdS2S83OpS-LYA967KjHDnrsjx6LAyRGKA_ldh3S3_Q_1DeGjGOt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2200475617</pqid></control><display><type>article</type><title>Cu-Ba0.7Sr0.3TiO3 composites for electronic packaging</title><source>SpringerLink (Online service)</source><creator>Kumar, Sanjay ; Pradeepkumar, Maurya Sandeep ; Dwivedi, Akansha ; Ahmad, Md. Imteyaz</creator><creatorcontrib>Kumar, Sanjay ; Pradeepkumar, Maurya Sandeep ; Dwivedi, Akansha ; Ahmad, Md. Imteyaz</creatorcontrib><description>With the rapid growth of Electronic industries, there is an increasing demand for high-performance electronic packaging materials. In a harsher service environment, the high-temperature performance and thermal cycling stability are required to run the electronic system. In order to remove the heat generated in electronic systems, appropriate materials must be developed as heat sinks. In this work, we report Ba 0.7 Sr 0.3 TiO 3 nanoparticles, which were synthesized using a citrate gel method, used as reinforcements in a Cu matrix composite. These composites have shown the coefficient of thermal expansion value compatible to that of Si and GaAs at the same time having a superior thermal conductivity of 292.213 W/m K compared to SiC reinforced composites, making it a promising material for packaging applications in semiconductor industries.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-019-01231-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Citrate gel method ; Electronic packaging ; Electronic systems ; Heat sinks ; High temperature ; Materials Science ; Metal matrix composites ; Nanoparticles ; Optical and Electronic Materials ; Product design ; Thermal conductivity ; Thermal cycling ; Thermal expansion ; Thermal stability</subject><ispartof>Journal of materials science. Materials in electronics, 2019-05, Vol.30 (9), p.9022-9028</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-15f39c13772623ea22c349821f1593c753adc127004922942906fcc76042bc073</citedby><cites>FETCH-LOGICAL-c249t-15f39c13772623ea22c349821f1593c753adc127004922942906fcc76042bc073</cites><orcidid>0000-0002-6293-8817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-019-01231-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-019-01231-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kumar, Sanjay</creatorcontrib><creatorcontrib>Pradeepkumar, Maurya Sandeep</creatorcontrib><creatorcontrib>Dwivedi, Akansha</creatorcontrib><creatorcontrib>Ahmad, Md. Imteyaz</creatorcontrib><title>Cu-Ba0.7Sr0.3TiO3 composites for electronic packaging</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>With the rapid growth of Electronic industries, there is an increasing demand for high-performance electronic packaging materials. In a harsher service environment, the high-temperature performance and thermal cycling stability are required to run the electronic system. In order to remove the heat generated in electronic systems, appropriate materials must be developed as heat sinks. In this work, we report Ba 0.7 Sr 0.3 TiO 3 nanoparticles, which were synthesized using a citrate gel method, used as reinforcements in a Cu matrix composite. These composites have shown the coefficient of thermal expansion value compatible to that of Si and GaAs at the same time having a superior thermal conductivity of 292.213 W/m K compared to SiC reinforced composites, making it a promising material for packaging applications in semiconductor industries.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Citrate gel method</subject><subject>Electronic packaging</subject><subject>Electronic systems</subject><subject>Heat sinks</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Metal matrix composites</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Product design</subject><subject>Thermal conductivity</subject><subject>Thermal cycling</subject><subject>Thermal expansion</subject><subject>Thermal stability</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEURYMoWKt_wNWA69T3XpLJZKnFLyh0YQV3IcZMmdpOxmS68N87dQR3Lh53c899cBi7RJghgL7OCJWSHNAMRwI5HrEJKi24rOj1mE3AKM2lIjplZzlvAKCUopowNd_zWwcz_ZxgJlbNUhQ-7rqYmz7koo6pCNvg-xTbxhed8x9u3bTrc3ZSu20OF785ZS_3d6v5I18sH57mNwvuSZqeo6qF8Si0ppJEcEReSFMR1qiM8FoJ9-6RNIA0REaSgbL2Xpcg6c2DFlN2Ne52KX7uQ-7tJu5TO7y0RAOlVYmHFo0tn2LOKdS2S83OpS-LYA967KjHDnrsjx6LAyRGKA_ldh3S3_Q_1DeGjGOt</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Kumar, Sanjay</creator><creator>Pradeepkumar, Maurya Sandeep</creator><creator>Dwivedi, Akansha</creator><creator>Ahmad, Md. Imteyaz</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-6293-8817</orcidid></search><sort><creationdate>20190501</creationdate><title>Cu-Ba0.7Sr0.3TiO3 composites for electronic packaging</title><author>Kumar, Sanjay ; Pradeepkumar, Maurya Sandeep ; Dwivedi, Akansha ; Ahmad, Md. Imteyaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-15f39c13772623ea22c349821f1593c753adc127004922942906fcc76042bc073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Citrate gel method</topic><topic>Electronic packaging</topic><topic>Electronic systems</topic><topic>Heat sinks</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Metal matrix composites</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Product design</topic><topic>Thermal conductivity</topic><topic>Thermal cycling</topic><topic>Thermal expansion</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Sanjay</creatorcontrib><creatorcontrib>Pradeepkumar, Maurya Sandeep</creatorcontrib><creatorcontrib>Dwivedi, Akansha</creatorcontrib><creatorcontrib>Ahmad, Md. Imteyaz</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Sanjay</au><au>Pradeepkumar, Maurya Sandeep</au><au>Dwivedi, Akansha</au><au>Ahmad, Md. Imteyaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cu-Ba0.7Sr0.3TiO3 composites for electronic packaging</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>30</volume><issue>9</issue><spage>9022</spage><epage>9028</epage><pages>9022-9028</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>With the rapid growth of Electronic industries, there is an increasing demand for high-performance electronic packaging materials. In a harsher service environment, the high-temperature performance and thermal cycling stability are required to run the electronic system. In order to remove the heat generated in electronic systems, appropriate materials must be developed as heat sinks. In this work, we report Ba 0.7 Sr 0.3 TiO 3 nanoparticles, which were synthesized using a citrate gel method, used as reinforcements in a Cu matrix composite. These composites have shown the coefficient of thermal expansion value compatible to that of Si and GaAs at the same time having a superior thermal conductivity of 292.213 W/m K compared to SiC reinforced composites, making it a promising material for packaging applications in semiconductor industries.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-019-01231-1</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6293-8817</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2019-05, Vol.30 (9), p.9022-9028
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2200475617
source SpringerLink (Online service)
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Citrate gel method
Electronic packaging
Electronic systems
Heat sinks
High temperature
Materials Science
Metal matrix composites
Nanoparticles
Optical and Electronic Materials
Product design
Thermal conductivity
Thermal cycling
Thermal expansion
Thermal stability
title Cu-Ba0.7Sr0.3TiO3 composites for electronic packaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cu-Ba0.7Sr0.3TiO3%20composites%20for%20electronic%20packaging&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Kumar,%20Sanjay&rft.date=2019-05-01&rft.volume=30&rft.issue=9&rft.spage=9022&rft.epage=9028&rft.pages=9022-9028&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-019-01231-1&rft_dat=%3Cproquest_cross%3E2200475617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2200475617&rft_id=info:pmid/&rfr_iscdi=true