Dynamical analysis of a new three-dimensional fractional chaotic system
In the present paper, a new fractional chaotic system proposed by the authors is discussed. Moreover, based on the stability theory of fractional-order systems, conditions for the stability of nonlinear fractional-order systems are presented, and the existence and uniqueness of the solutions of the...
Gespeichert in:
Veröffentlicht in: | Pramāṇa 2019-06, Vol.92 (6), p.1-14, Article 91 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | Pramāṇa |
container_volume | 92 |
creator | Gholamin, P Sheikhani, A H Refahi |
description | In the present paper, a new fractional chaotic system proposed by the authors is discussed. Moreover, based on the stability theory of fractional-order systems, conditions for the stability of nonlinear fractional-order systems are presented, and the existence and uniqueness of the solutions of the resulting new fractional chaotic attractor are also studied. Next, the necessary conditions for the existence of chaotic attractors in new fractional chaotic system are reported, and at the end the stability analysis of the corresponding equilibria is given. Last but not the least, the presented numerical simulations confirm the validity of our analysis. |
doi_str_mv | 10.1007/s12043-019-1738-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2200259909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2200259909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-596f9a72625c46a6bda732116f756b71098c9dee10c407156a904e775685c77b3</originalsourceid><addsrcrecordid>eNp1kE9LAzEUxIMoWKsfwFvAc_S9_N0cpWoVCl70HNI0a7d0d2uyIvvtTVnBk6c3ML8ZHkPINcItApi7jBykYICWoREVG0_IDKwRzCDiadECJJO8sufkIucdFFAKNSPLh7HzbRP8nvrO78fcZNrX1NMuftNhm2Jkm6aNXW76YtM6-TBMMmx9PzSB5jEPsb0kZ7Xf53j1e-fk_enxbfHMVq_Ll8X9igWBemDK6tp6wzVXQWqv1xtvBEfUtVF6bRBsFewmRoQgwaDS3oKMppiVCsasxZzcTL2H1H9-xTy4Xf-Vyj_ZcQ7AlbVgC4UTFVKfc4q1O6Sm9Wl0CO64l5v2cmUGd9zLjSXDp0wubPcR01_z_6EfMo9s_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2200259909</pqid></control><display><type>article</type><title>Dynamical analysis of a new three-dimensional fractional chaotic system</title><source>Indian Academy of Sciences</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gholamin, P ; Sheikhani, A H Refahi</creator><creatorcontrib>Gholamin, P ; Sheikhani, A H Refahi</creatorcontrib><description>In the present paper, a new fractional chaotic system proposed by the authors is discussed. Moreover, based on the stability theory of fractional-order systems, conditions for the stability of nonlinear fractional-order systems are presented, and the existence and uniqueness of the solutions of the resulting new fractional chaotic attractor are also studied. Next, the necessary conditions for the existence of chaotic attractors in new fractional chaotic system are reported, and at the end the stability analysis of the corresponding equilibria is given. Last but not the least, the presented numerical simulations confirm the validity of our analysis.</description><identifier>ISSN: 0304-4289</identifier><identifier>EISSN: 0973-7111</identifier><identifier>DOI: 10.1007/s12043-019-1738-y</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Astronomy ; Astrophysics and Astroparticles ; Chaos theory ; Computer simulation ; Nonlinear systems ; Observations and Techniques ; Physics ; Physics and Astronomy ; Stability analysis</subject><ispartof>Pramāṇa, 2019-06, Vol.92 (6), p.1-14, Article 91</ispartof><rights>Indian Academy of Sciences 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-596f9a72625c46a6bda732116f756b71098c9dee10c407156a904e775685c77b3</citedby><cites>FETCH-LOGICAL-c316t-596f9a72625c46a6bda732116f756b71098c9dee10c407156a904e775685c77b3</cites><orcidid>0000-0003-1664-5471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12043-019-1738-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12043-019-1738-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gholamin, P</creatorcontrib><creatorcontrib>Sheikhani, A H Refahi</creatorcontrib><title>Dynamical analysis of a new three-dimensional fractional chaotic system</title><title>Pramāṇa</title><addtitle>Pramana - J Phys</addtitle><description>In the present paper, a new fractional chaotic system proposed by the authors is discussed. Moreover, based on the stability theory of fractional-order systems, conditions for the stability of nonlinear fractional-order systems are presented, and the existence and uniqueness of the solutions of the resulting new fractional chaotic attractor are also studied. Next, the necessary conditions for the existence of chaotic attractors in new fractional chaotic system are reported, and at the end the stability analysis of the corresponding equilibria is given. Last but not the least, the presented numerical simulations confirm the validity of our analysis.</description><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Chaos theory</subject><subject>Computer simulation</subject><subject>Nonlinear systems</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Stability analysis</subject><issn>0304-4289</issn><issn>0973-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEUxIMoWKsfwFvAc_S9_N0cpWoVCl70HNI0a7d0d2uyIvvtTVnBk6c3ML8ZHkPINcItApi7jBykYICWoREVG0_IDKwRzCDiadECJJO8sufkIucdFFAKNSPLh7HzbRP8nvrO78fcZNrX1NMuftNhm2Jkm6aNXW76YtM6-TBMMmx9PzSB5jEPsb0kZ7Xf53j1e-fk_enxbfHMVq_Ll8X9igWBemDK6tp6wzVXQWqv1xtvBEfUtVF6bRBsFewmRoQgwaDS3oKMppiVCsasxZzcTL2H1H9-xTy4Xf-Vyj_ZcQ7AlbVgC4UTFVKfc4q1O6Sm9Wl0CO64l5v2cmUGd9zLjSXDp0wubPcR01_z_6EfMo9s_Q</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Gholamin, P</creator><creator>Sheikhani, A H Refahi</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1664-5471</orcidid></search><sort><creationdate>20190601</creationdate><title>Dynamical analysis of a new three-dimensional fractional chaotic system</title><author>Gholamin, P ; Sheikhani, A H Refahi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-596f9a72625c46a6bda732116f756b71098c9dee10c407156a904e775685c77b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Chaos theory</topic><topic>Computer simulation</topic><topic>Nonlinear systems</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gholamin, P</creatorcontrib><creatorcontrib>Sheikhani, A H Refahi</creatorcontrib><collection>CrossRef</collection><jtitle>Pramāṇa</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gholamin, P</au><au>Sheikhani, A H Refahi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical analysis of a new three-dimensional fractional chaotic system</atitle><jtitle>Pramāṇa</jtitle><stitle>Pramana - J Phys</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>92</volume><issue>6</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><artnum>91</artnum><issn>0304-4289</issn><eissn>0973-7111</eissn><abstract>In the present paper, a new fractional chaotic system proposed by the authors is discussed. Moreover, based on the stability theory of fractional-order systems, conditions for the stability of nonlinear fractional-order systems are presented, and the existence and uniqueness of the solutions of the resulting new fractional chaotic attractor are also studied. Next, the necessary conditions for the existence of chaotic attractors in new fractional chaotic system are reported, and at the end the stability analysis of the corresponding equilibria is given. Last but not the least, the presented numerical simulations confirm the validity of our analysis.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12043-019-1738-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1664-5471</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4289 |
ispartof | Pramāṇa, 2019-06, Vol.92 (6), p.1-14, Article 91 |
issn | 0304-4289 0973-7111 |
language | eng |
recordid | cdi_proquest_journals_2200259909 |
source | Indian Academy of Sciences; SpringerLink Journals - AutoHoldings |
subjects | Astronomy Astrophysics and Astroparticles Chaos theory Computer simulation Nonlinear systems Observations and Techniques Physics Physics and Astronomy Stability analysis |
title | Dynamical analysis of a new three-dimensional fractional chaotic system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A37%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20analysis%20of%20a%20new%20three-dimensional%20fractional%20chaotic%20system&rft.jtitle=Prama%CC%84n%CC%A3a&rft.au=Gholamin,%20P&rft.date=2019-06-01&rft.volume=92&rft.issue=6&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.artnum=91&rft.issn=0304-4289&rft.eissn=0973-7111&rft_id=info:doi/10.1007/s12043-019-1738-y&rft_dat=%3Cproquest_cross%3E2200259909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2200259909&rft_id=info:pmid/&rfr_iscdi=true |