Dynamical analysis of a new three-dimensional fractional chaotic system

In the present paper, a new fractional chaotic system proposed by the authors is discussed. Moreover, based on the stability theory of fractional-order systems, conditions for the stability of nonlinear fractional-order systems are presented, and the existence and uniqueness of the solutions of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pramāṇa 2019-06, Vol.92 (6), p.1-14, Article 91
Hauptverfasser: Gholamin, P, Sheikhani, A H Refahi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 6
container_start_page 1
container_title Pramāṇa
container_volume 92
creator Gholamin, P
Sheikhani, A H Refahi
description In the present paper, a new fractional chaotic system proposed by the authors is discussed. Moreover, based on the stability theory of fractional-order systems, conditions for the stability of nonlinear fractional-order systems are presented, and the existence and uniqueness of the solutions of the resulting new fractional chaotic attractor are also studied. Next, the necessary conditions for the existence of chaotic attractors in new fractional chaotic system are reported, and at the end the stability analysis of the corresponding equilibria is given. Last but not the least, the presented numerical simulations confirm the validity of our analysis.
doi_str_mv 10.1007/s12043-019-1738-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2200259909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2200259909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-596f9a72625c46a6bda732116f756b71098c9dee10c407156a904e775685c77b3</originalsourceid><addsrcrecordid>eNp1kE9LAzEUxIMoWKsfwFvAc_S9_N0cpWoVCl70HNI0a7d0d2uyIvvtTVnBk6c3ML8ZHkPINcItApi7jBykYICWoREVG0_IDKwRzCDiadECJJO8sufkIucdFFAKNSPLh7HzbRP8nvrO78fcZNrX1NMuftNhm2Jkm6aNXW76YtM6-TBMMmx9PzSB5jEPsb0kZ7Xf53j1e-fk_enxbfHMVq_Ll8X9igWBemDK6tp6wzVXQWqv1xtvBEfUtVF6bRBsFewmRoQgwaDS3oKMppiVCsasxZzcTL2H1H9-xTy4Xf-Vyj_ZcQ7AlbVgC4UTFVKfc4q1O6Sm9Wl0CO64l5v2cmUGd9zLjSXDp0wubPcR01_z_6EfMo9s_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2200259909</pqid></control><display><type>article</type><title>Dynamical analysis of a new three-dimensional fractional chaotic system</title><source>Indian Academy of Sciences</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gholamin, P ; Sheikhani, A H Refahi</creator><creatorcontrib>Gholamin, P ; Sheikhani, A H Refahi</creatorcontrib><description>In the present paper, a new fractional chaotic system proposed by the authors is discussed. Moreover, based on the stability theory of fractional-order systems, conditions for the stability of nonlinear fractional-order systems are presented, and the existence and uniqueness of the solutions of the resulting new fractional chaotic attractor are also studied. Next, the necessary conditions for the existence of chaotic attractors in new fractional chaotic system are reported, and at the end the stability analysis of the corresponding equilibria is given. Last but not the least, the presented numerical simulations confirm the validity of our analysis.</description><identifier>ISSN: 0304-4289</identifier><identifier>EISSN: 0973-7111</identifier><identifier>DOI: 10.1007/s12043-019-1738-y</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Astronomy ; Astrophysics and Astroparticles ; Chaos theory ; Computer simulation ; Nonlinear systems ; Observations and Techniques ; Physics ; Physics and Astronomy ; Stability analysis</subject><ispartof>Pramāṇa, 2019-06, Vol.92 (6), p.1-14, Article 91</ispartof><rights>Indian Academy of Sciences 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-596f9a72625c46a6bda732116f756b71098c9dee10c407156a904e775685c77b3</citedby><cites>FETCH-LOGICAL-c316t-596f9a72625c46a6bda732116f756b71098c9dee10c407156a904e775685c77b3</cites><orcidid>0000-0003-1664-5471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12043-019-1738-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12043-019-1738-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gholamin, P</creatorcontrib><creatorcontrib>Sheikhani, A H Refahi</creatorcontrib><title>Dynamical analysis of a new three-dimensional fractional chaotic system</title><title>Pramāṇa</title><addtitle>Pramana - J Phys</addtitle><description>In the present paper, a new fractional chaotic system proposed by the authors is discussed. Moreover, based on the stability theory of fractional-order systems, conditions for the stability of nonlinear fractional-order systems are presented, and the existence and uniqueness of the solutions of the resulting new fractional chaotic attractor are also studied. Next, the necessary conditions for the existence of chaotic attractors in new fractional chaotic system are reported, and at the end the stability analysis of the corresponding equilibria is given. Last but not the least, the presented numerical simulations confirm the validity of our analysis.</description><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Chaos theory</subject><subject>Computer simulation</subject><subject>Nonlinear systems</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Stability analysis</subject><issn>0304-4289</issn><issn>0973-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEUxIMoWKsfwFvAc_S9_N0cpWoVCl70HNI0a7d0d2uyIvvtTVnBk6c3ML8ZHkPINcItApi7jBykYICWoREVG0_IDKwRzCDiadECJJO8sufkIucdFFAKNSPLh7HzbRP8nvrO78fcZNrX1NMuftNhm2Jkm6aNXW76YtM6-TBMMmx9PzSB5jEPsb0kZ7Xf53j1e-fk_enxbfHMVq_Ll8X9igWBemDK6tp6wzVXQWqv1xtvBEfUtVF6bRBsFewmRoQgwaDS3oKMppiVCsasxZzcTL2H1H9-xTy4Xf-Vyj_ZcQ7AlbVgC4UTFVKfc4q1O6Sm9Wl0CO64l5v2cmUGd9zLjSXDp0wubPcR01_z_6EfMo9s_Q</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Gholamin, P</creator><creator>Sheikhani, A H Refahi</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1664-5471</orcidid></search><sort><creationdate>20190601</creationdate><title>Dynamical analysis of a new three-dimensional fractional chaotic system</title><author>Gholamin, P ; Sheikhani, A H Refahi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-596f9a72625c46a6bda732116f756b71098c9dee10c407156a904e775685c77b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Chaos theory</topic><topic>Computer simulation</topic><topic>Nonlinear systems</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gholamin, P</creatorcontrib><creatorcontrib>Sheikhani, A H Refahi</creatorcontrib><collection>CrossRef</collection><jtitle>Pramāṇa</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gholamin, P</au><au>Sheikhani, A H Refahi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical analysis of a new three-dimensional fractional chaotic system</atitle><jtitle>Pramāṇa</jtitle><stitle>Pramana - J Phys</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>92</volume><issue>6</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><artnum>91</artnum><issn>0304-4289</issn><eissn>0973-7111</eissn><abstract>In the present paper, a new fractional chaotic system proposed by the authors is discussed. Moreover, based on the stability theory of fractional-order systems, conditions for the stability of nonlinear fractional-order systems are presented, and the existence and uniqueness of the solutions of the resulting new fractional chaotic attractor are also studied. Next, the necessary conditions for the existence of chaotic attractors in new fractional chaotic system are reported, and at the end the stability analysis of the corresponding equilibria is given. Last but not the least, the presented numerical simulations confirm the validity of our analysis.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12043-019-1738-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1664-5471</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0304-4289
ispartof Pramāṇa, 2019-06, Vol.92 (6), p.1-14, Article 91
issn 0304-4289
0973-7111
language eng
recordid cdi_proquest_journals_2200259909
source Indian Academy of Sciences; SpringerLink Journals - AutoHoldings
subjects Astronomy
Astrophysics and Astroparticles
Chaos theory
Computer simulation
Nonlinear systems
Observations and Techniques
Physics
Physics and Astronomy
Stability analysis
title Dynamical analysis of a new three-dimensional fractional chaotic system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A37%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20analysis%20of%20a%20new%20three-dimensional%20fractional%20chaotic%20system&rft.jtitle=Prama%CC%84n%CC%A3a&rft.au=Gholamin,%20P&rft.date=2019-06-01&rft.volume=92&rft.issue=6&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.artnum=91&rft.issn=0304-4289&rft.eissn=0973-7111&rft_id=info:doi/10.1007/s12043-019-1738-y&rft_dat=%3Cproquest_cross%3E2200259909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2200259909&rft_id=info:pmid/&rfr_iscdi=true