Sandpiles on the Square Lattice

We give a non-trivial upper bound for the critical density when stabilizing i.i.d. distributed sandpiles on the lattice Z 2 . We also determine the asymptotic spectral gap, asymptotic mixing time, and prove a cutoff phenomenon for the recurrent state abelian sandpile model on the torus Z / m Z 2 . T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2019-04, Vol.367 (1), p.33-87
Hauptverfasser: Hough, Robert D., Jerison, Daniel C., Levine, Lionel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a non-trivial upper bound for the critical density when stabilizing i.i.d. distributed sandpiles on the lattice Z 2 . We also determine the asymptotic spectral gap, asymptotic mixing time, and prove a cutoff phenomenon for the recurrent state abelian sandpile model on the torus Z / m Z 2 . The techniques use analysis of the space of functions on Z 2 which are harmonic modulo 1. In the course of our arguments, we characterize the harmonic modulo 1 functions in ℓ p ( Z 2 ) as linear combinations of certain discrete derivatives of Green’s functions, extending a result of Schmidt and Verbitskiy (Commun Math Phys 292(3):721–759, 2009 . arXiv:0901.3124 [math.DS]).
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-019-03408-5