Sandpiles on the Square Lattice
We give a non-trivial upper bound for the critical density when stabilizing i.i.d. distributed sandpiles on the lattice Z 2 . We also determine the asymptotic spectral gap, asymptotic mixing time, and prove a cutoff phenomenon for the recurrent state abelian sandpile model on the torus Z / m Z 2 . T...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2019-04, Vol.367 (1), p.33-87 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a non-trivial upper bound for the critical density when stabilizing i.i.d. distributed sandpiles on the lattice
Z
2
. We also determine the asymptotic spectral gap, asymptotic mixing time, and prove a cutoff phenomenon for the recurrent state abelian sandpile model on the torus
Z
/
m
Z
2
. The techniques use analysis of the space of functions on
Z
2
which are harmonic modulo 1. In the course of our arguments, we characterize the harmonic modulo 1 functions in
ℓ
p
(
Z
2
)
as linear combinations of certain discrete derivatives of Green’s functions, extending a result of Schmidt and Verbitskiy (Commun Math Phys 292(3):721–759,
2009
.
arXiv:0901.3124
[math.DS]). |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-019-03408-5 |