Adjusting for Measurement Error in Retrospectively Reported Work Histories: An Analysis Using Swedish Register Data

We use work histories retrospectively reported and matched to register data from the Swedish unemployment office to assess: 1) the prevalence of measurement error in reported spells of unemployment; 2) the impact of using such spells as the response variable of an exponential model; and 3) strategie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of official statistics 2019-03, Vol.35 (1), p.203-229
Hauptverfasser: Pina-Sánchez, Jose, Koskinen, Johan, Plewis, Ian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 229
container_issue 1
container_start_page 203
container_title Journal of official statistics
container_volume 35
creator Pina-Sánchez, Jose
Koskinen, Johan
Plewis, Ian
description We use work histories retrospectively reported and matched to register data from the Swedish unemployment office to assess: 1) the prevalence of measurement error in reported spells of unemployment; 2) the impact of using such spells as the response variable of an exponential model; and 3) strategies for the adjustment of the measurement error. Due to the omission or misclassification of spells in work histories we cannot carry out typical adjustments for memory failures based on multiplicative models. Instead we suggest an adjustment method based on a mixture Bayesian model capable of differentiating between misdated spells and those for which the observed and true durations are unrelated. This adjustment is applied in two manners, one assuming access to a validation subsample and another relying on a strong prior for the mixture mechanism. Both solutions demonstrate a substantial reduction in the vast biases observed in the regression coefficients of the exponential model when survey data is used.
doi_str_mv 10.2478/jos-2019-0010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199937504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.2478_jos-2019-0010</sage_id><sourcerecordid>2199937504</sourcerecordid><originalsourceid>FETCH-LOGICAL-b413t-167b8578283382341c61bb334135f21af99a03b68956d0d3f0479743694630bb3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFaP3he8CdH9yNfqqdRqhYqgFr2FTbOJiWlSdzaW_HunRPAiCAszuzzPy84QcsrZhfCj-LJqwROMK48xzvbISGD1IhlG-2TERCw8X8i3Q3IEUDEmlRR8RGCSVR24silo3lr6YDR01qxN4-jMWnwpG_pknG1hY1au_DJ1j_dNa53J6GtrP-i8BNfa0sAVnTR4dN1DCXQJu8znrclKeEelQMxYeqOdPiYHua7BnPzUMVnezl6mc2_xeHc_nSy81OfSeTyM0jiIYhFLGQvp81XI01RiI4NccJ0rpZlMw1gFYcYymTM_UpEvQ-WHkiE5JmdD7sa2n50Bl1RtZ_GDkAiulJJRwHykvIFa4ZBgTZ5sbLnWtk84S3Z7RQsF3Guy2yvy1wO_1TVOlJnCdj02v-F_ewEXTKJ9PtigC_Of8g2kGYuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199937504</pqid></control><display><type>article</type><title>Adjusting for Measurement Error in Retrospectively Reported Work Histories: An Analysis Using Swedish Register Data</title><source>De Gruyter Open Access Journals</source><source>Sage Journals GOLD Open Access 2024</source><source>Sociological Abstracts</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pina-Sánchez, Jose ; Koskinen, Johan ; Plewis, Ian</creator><creatorcontrib>Pina-Sánchez, Jose ; Koskinen, Johan ; Plewis, Ian</creatorcontrib><description>We use work histories retrospectively reported and matched to register data from the Swedish unemployment office to assess: 1) the prevalence of measurement error in reported spells of unemployment; 2) the impact of using such spells as the response variable of an exponential model; and 3) strategies for the adjustment of the measurement error. Due to the omission or misclassification of spells in work histories we cannot carry out typical adjustments for memory failures based on multiplicative models. Instead we suggest an adjustment method based on a mixture Bayesian model capable of differentiating between misdated spells and those for which the observed and true durations are unrelated. This adjustment is applied in two manners, one assuming access to a validation subsample and another relying on a strong prior for the mixture mechanism. Both solutions demonstrate a substantial reduction in the vast biases observed in the regression coefficients of the exponential model when survey data is used.</description><identifier>ISSN: 0282-423X</identifier><identifier>ISSN: 2001-7367</identifier><identifier>EISSN: 2001-7367</identifier><identifier>DOI: 10.2478/jos-2019-0010</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Adjustment ; Bayesian analysis ; Bayesian statistics ; Employment ; Error analysis ; Failure analysis ; measurement error ; Measurement errors ; Memory ; mixture model ; Regression analysis ; Regression coefficients ; retrospective data ; Unemployment</subject><ispartof>Journal of official statistics, 2019-03, Vol.35 (1), p.203-229</ispartof><rights>2019 Jose Pina-Sánchez et al., published by Sciendo</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b413t-167b8578283382341c61bb334135f21af99a03b68956d0d3f0479743694630bb3</citedby><cites>FETCH-LOGICAL-b413t-167b8578283382341c61bb334135f21af99a03b68956d0d3f0479743694630bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.2478/jos-2019-0010$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.2478/jos-2019-0010$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,21964,27342,27851,27922,27923,33772,44943,45331,75934,75935</link.rule.ids></links><search><creatorcontrib>Pina-Sánchez, Jose</creatorcontrib><creatorcontrib>Koskinen, Johan</creatorcontrib><creatorcontrib>Plewis, Ian</creatorcontrib><title>Adjusting for Measurement Error in Retrospectively Reported Work Histories: An Analysis Using Swedish Register Data</title><title>Journal of official statistics</title><description>We use work histories retrospectively reported and matched to register data from the Swedish unemployment office to assess: 1) the prevalence of measurement error in reported spells of unemployment; 2) the impact of using such spells as the response variable of an exponential model; and 3) strategies for the adjustment of the measurement error. Due to the omission or misclassification of spells in work histories we cannot carry out typical adjustments for memory failures based on multiplicative models. Instead we suggest an adjustment method based on a mixture Bayesian model capable of differentiating between misdated spells and those for which the observed and true durations are unrelated. This adjustment is applied in two manners, one assuming access to a validation subsample and another relying on a strong prior for the mixture mechanism. Both solutions demonstrate a substantial reduction in the vast biases observed in the regression coefficients of the exponential model when survey data is used.</description><subject>Adjustment</subject><subject>Bayesian analysis</subject><subject>Bayesian statistics</subject><subject>Employment</subject><subject>Error analysis</subject><subject>Failure analysis</subject><subject>measurement error</subject><subject>Measurement errors</subject><subject>Memory</subject><subject>mixture model</subject><subject>Regression analysis</subject><subject>Regression coefficients</subject><subject>retrospective data</subject><subject>Unemployment</subject><issn>0282-423X</issn><issn>2001-7367</issn><issn>2001-7367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>BHHNA</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkE1Lw0AQhhdRsFaP3he8CdH9yNfqqdRqhYqgFr2FTbOJiWlSdzaW_HunRPAiCAszuzzPy84QcsrZhfCj-LJqwROMK48xzvbISGD1IhlG-2TERCw8X8i3Q3IEUDEmlRR8RGCSVR24silo3lr6YDR01qxN4-jMWnwpG_pknG1hY1au_DJ1j_dNa53J6GtrP-i8BNfa0sAVnTR4dN1DCXQJu8znrclKeEelQMxYeqOdPiYHua7BnPzUMVnezl6mc2_xeHc_nSy81OfSeTyM0jiIYhFLGQvp81XI01RiI4NccJ0rpZlMw1gFYcYymTM_UpEvQ-WHkiE5JmdD7sa2n50Bl1RtZ_GDkAiulJJRwHykvIFa4ZBgTZ5sbLnWtk84S3Z7RQsF3Guy2yvy1wO_1TVOlJnCdj02v-F_ewEXTKJ9PtigC_Of8g2kGYuw</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Pina-Sánchez, Jose</creator><creator>Koskinen, Johan</creator><creator>Plewis, Ian</creator><general>SAGE Publications</general><general>Sciendo</general><general>Statistics Sweden (SCB)</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7U4</scope><scope>7XB</scope><scope>88J</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHHNA</scope><scope>CCPQU</scope><scope>DWI</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>HEHIP</scope><scope>L6V</scope><scope>M2R</scope><scope>M2S</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>WZK</scope></search><sort><creationdate>20190301</creationdate><title>Adjusting for Measurement Error in Retrospectively Reported Work Histories: An Analysis Using Swedish Register Data</title><author>Pina-Sánchez, Jose ; Koskinen, Johan ; Plewis, Ian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b413t-167b8578283382341c61bb334135f21af99a03b68956d0d3f0479743694630bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adjustment</topic><topic>Bayesian analysis</topic><topic>Bayesian statistics</topic><topic>Employment</topic><topic>Error analysis</topic><topic>Failure analysis</topic><topic>measurement error</topic><topic>Measurement errors</topic><topic>Memory</topic><topic>mixture model</topic><topic>Regression analysis</topic><topic>Regression coefficients</topic><topic>retrospective data</topic><topic>Unemployment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pina-Sánchez, Jose</creatorcontrib><creatorcontrib>Koskinen, Johan</creatorcontrib><creatorcontrib>Plewis, Ian</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Sociological Abstracts</collection><collection>ProQuest One Community College</collection><collection>Sociological Abstracts</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Sociology Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Social Science Database</collection><collection>Sociology Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Journal of official statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pina-Sánchez, Jose</au><au>Koskinen, Johan</au><au>Plewis, Ian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjusting for Measurement Error in Retrospectively Reported Work Histories: An Analysis Using Swedish Register Data</atitle><jtitle>Journal of official statistics</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>35</volume><issue>1</issue><spage>203</spage><epage>229</epage><pages>203-229</pages><issn>0282-423X</issn><issn>2001-7367</issn><eissn>2001-7367</eissn><abstract>We use work histories retrospectively reported and matched to register data from the Swedish unemployment office to assess: 1) the prevalence of measurement error in reported spells of unemployment; 2) the impact of using such spells as the response variable of an exponential model; and 3) strategies for the adjustment of the measurement error. Due to the omission or misclassification of spells in work histories we cannot carry out typical adjustments for memory failures based on multiplicative models. Instead we suggest an adjustment method based on a mixture Bayesian model capable of differentiating between misdated spells and those for which the observed and true durations are unrelated. This adjustment is applied in two manners, one assuming access to a validation subsample and another relying on a strong prior for the mixture mechanism. Both solutions demonstrate a substantial reduction in the vast biases observed in the regression coefficients of the exponential model when survey data is used.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.2478/jos-2019-0010</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0282-423X
ispartof Journal of official statistics, 2019-03, Vol.35 (1), p.203-229
issn 0282-423X
2001-7367
2001-7367
language eng
recordid cdi_proquest_journals_2199937504
source De Gruyter Open Access Journals; Sage Journals GOLD Open Access 2024; Sociological Abstracts; EZB-FREE-00999 freely available EZB journals
subjects Adjustment
Bayesian analysis
Bayesian statistics
Employment
Error analysis
Failure analysis
measurement error
Measurement errors
Memory
mixture model
Regression analysis
Regression coefficients
retrospective data
Unemployment
title Adjusting for Measurement Error in Retrospectively Reported Work Histories: An Analysis Using Swedish Register Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjusting%20for%20Measurement%20Error%20in%20Retrospectively%20Reported%20Work%20Histories:%20An%20Analysis%20Using%20Swedish%20Register%20Data&rft.jtitle=Journal%20of%20official%20statistics&rft.au=Pina-S%C3%A1nchez,%20Jose&rft.date=2019-03-01&rft.volume=35&rft.issue=1&rft.spage=203&rft.epage=229&rft.pages=203-229&rft.issn=0282-423X&rft.eissn=2001-7367&rft_id=info:doi/10.2478/jos-2019-0010&rft_dat=%3Cproquest_cross%3E2199937504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199937504&rft_id=info:pmid/&rft_sage_id=10.2478_jos-2019-0010&rfr_iscdi=true