Structural and magnetotransport properties of (La, Pr)-Ba manganites

We report on the structural, magnetic and transport properties of the Pr-doped manganite (La1-xPrx)0.7Ba0.3MnO3 (x = 0.05 and 0.15). X-ray diffraction data demonstrate that both samples possess dual crystallographic phases: rhombohedral R3¯c and orthorhombic Pnma. This is due to the martensitic phas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2019-04, Vol.783, p.718-728
Hauptverfasser: Tozri, A., Dhahri, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 728
container_issue
container_start_page 718
container_title Journal of alloys and compounds
container_volume 783
creator Tozri, A.
Dhahri, E.
description We report on the structural, magnetic and transport properties of the Pr-doped manganite (La1-xPrx)0.7Ba0.3MnO3 (x = 0.05 and 0.15). X-ray diffraction data demonstrate that both samples possess dual crystallographic phases: rhombohedral R3¯c and orthorhombic Pnma. This is due to the martensitic phase transition inherent to the pristine La0.7Ba0.3MnO3 sample, whose impact is seen as a second metal-insulator (MI) transition below the ordered temperature in electric measurements. Griffiths phase (GP)-like behavior in the inverse magnetic susceptibility (χ−1(T)) was observed only for Pr-15%. The origin of the Griffiths singularity could be understood in terms of the competing accommodation strain arising from martensite-like phase transition and quenched disorder. Interestingly, GP cannot be considered as a precursor for the magnetoresistance (MR), but can be essential for improving the temperature coefficient of resistance (TCR). At low temperature, the magnetization follows the Bloch's T3/2 law, while the resistivity shows a shallow minimum in both samples. Our work reveals that, at low temperature, the influence of the magnetic contribution of Pr3+ becomes relevant against the quenched disorder (σ2). These findings suggest that quenched disorder, strain field, and the coupling between rare-earth and Mn3+/Mn4+ sublattice are important factors in determining the structural and magneto-transport properties in manganite systems. [Display omitted] •Quenched disorder destroys the martensitic transition.•Two metal–insulator transitions are detected in the electrical resistivity.•Griffiths singularity improve the temperature coefficient of resistance.•A shallow minimum has been observed at low temperature resistivity.
doi_str_mv 10.1016/j.jallcom.2018.12.303
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199894418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838818348515</els_id><sourcerecordid>2199894418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-f7bce2ed28b17526530d64d42fd929a1e2519d403e878f3bda5ff18798713e343</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOI4-glBwo2BrLr0kK9HxCgMK6jpkkpOhpdPUJBV8ezPM7F2dzX85_4fQOcEFwaS-6YpO9b12m4JiwgtCC4bZAZoR3rC8rGtxiGZY0CrnjPNjdBJChzEmgpEZeviIftJx8qrP1GCyjVoPEF30agij8zEbvRvBxxZC5mx2uVTX2bu_yu9Vkg5rNbQRwik6sqoPcLa_c_T19Pi5eMmXb8-vi7tlrhlrYm6blQYKhvIVaSpaVwybujQltUZQoQjQighTYga84ZatjKqsTSMEbwgDVrI5utjlpqe-JwhRdm7yQ6qUlAjBRVkSnlTVTqW9C8GDlaNvN8r_SoLlFpjs5B6Y3AKThMoELPludz5IE35a8DLoFgYNpvWgozSu_SfhD7sFdcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199894418</pqid></control><display><type>article</type><title>Structural and magnetotransport properties of (La, Pr)-Ba manganites</title><source>Elsevier ScienceDirect Journals</source><creator>Tozri, A. ; Dhahri, E.</creator><creatorcontrib>Tozri, A. ; Dhahri, E.</creatorcontrib><description>We report on the structural, magnetic and transport properties of the Pr-doped manganite (La1-xPrx)0.7Ba0.3MnO3 (x = 0.05 and 0.15). X-ray diffraction data demonstrate that both samples possess dual crystallographic phases: rhombohedral R3¯c and orthorhombic Pnma. This is due to the martensitic phase transition inherent to the pristine La0.7Ba0.3MnO3 sample, whose impact is seen as a second metal-insulator (MI) transition below the ordered temperature in electric measurements. Griffiths phase (GP)-like behavior in the inverse magnetic susceptibility (χ−1(T)) was observed only for Pr-15%. The origin of the Griffiths singularity could be understood in terms of the competing accommodation strain arising from martensite-like phase transition and quenched disorder. Interestingly, GP cannot be considered as a precursor for the magnetoresistance (MR), but can be essential for improving the temperature coefficient of resistance (TCR). At low temperature, the magnetization follows the Bloch's T3/2 law, while the resistivity shows a shallow minimum in both samples. Our work reveals that, at low temperature, the influence of the magnetic contribution of Pr3+ becomes relevant against the quenched disorder (σ2). These findings suggest that quenched disorder, strain field, and the coupling between rare-earth and Mn3+/Mn4+ sublattice are important factors in determining the structural and magneto-transport properties in manganite systems. [Display omitted] •Quenched disorder destroys the martensitic transition.•Two metal–insulator transitions are detected in the electrical resistivity.•Griffiths singularity improve the temperature coefficient of resistance.•A shallow minimum has been observed at low temperature resistivity.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2018.12.303</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Crystallography ; Griffiths phase ; Insulators ; Low temperature resistance ; Magnetic permeability ; Magnetic properties ; Magnetoresistance ; Magnetoresistivity ; Manganites ; Martensite ; Phase transitions ; Praseodymium ; Quenching ; Rare earth elements ; Resistivity minimum ; Spin waves ; Temperature coefficient of resistance ; Transport properties ; X-ray diffraction</subject><ispartof>Journal of alloys and compounds, 2019-04, Vol.783, p.718-728</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 30, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-f7bce2ed28b17526530d64d42fd929a1e2519d403e878f3bda5ff18798713e343</citedby><cites>FETCH-LOGICAL-c337t-f7bce2ed28b17526530d64d42fd929a1e2519d403e878f3bda5ff18798713e343</cites><orcidid>0000-0001-8651-1255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838818348515$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Tozri, A.</creatorcontrib><creatorcontrib>Dhahri, E.</creatorcontrib><title>Structural and magnetotransport properties of (La, Pr)-Ba manganites</title><title>Journal of alloys and compounds</title><description>We report on the structural, magnetic and transport properties of the Pr-doped manganite (La1-xPrx)0.7Ba0.3MnO3 (x = 0.05 and 0.15). X-ray diffraction data demonstrate that both samples possess dual crystallographic phases: rhombohedral R3¯c and orthorhombic Pnma. This is due to the martensitic phase transition inherent to the pristine La0.7Ba0.3MnO3 sample, whose impact is seen as a second metal-insulator (MI) transition below the ordered temperature in electric measurements. Griffiths phase (GP)-like behavior in the inverse magnetic susceptibility (χ−1(T)) was observed only for Pr-15%. The origin of the Griffiths singularity could be understood in terms of the competing accommodation strain arising from martensite-like phase transition and quenched disorder. Interestingly, GP cannot be considered as a precursor for the magnetoresistance (MR), but can be essential for improving the temperature coefficient of resistance (TCR). At low temperature, the magnetization follows the Bloch's T3/2 law, while the resistivity shows a shallow minimum in both samples. Our work reveals that, at low temperature, the influence of the magnetic contribution of Pr3+ becomes relevant against the quenched disorder (σ2). These findings suggest that quenched disorder, strain field, and the coupling between rare-earth and Mn3+/Mn4+ sublattice are important factors in determining the structural and magneto-transport properties in manganite systems. [Display omitted] •Quenched disorder destroys the martensitic transition.•Two metal–insulator transitions are detected in the electrical resistivity.•Griffiths singularity improve the temperature coefficient of resistance.•A shallow minimum has been observed at low temperature resistivity.</description><subject>Crystallography</subject><subject>Griffiths phase</subject><subject>Insulators</subject><subject>Low temperature resistance</subject><subject>Magnetic permeability</subject><subject>Magnetic properties</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Manganites</subject><subject>Martensite</subject><subject>Phase transitions</subject><subject>Praseodymium</subject><subject>Quenching</subject><subject>Rare earth elements</subject><subject>Resistivity minimum</subject><subject>Spin waves</subject><subject>Temperature coefficient of resistance</subject><subject>Transport properties</subject><subject>X-ray diffraction</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMoOI4-glBwo2BrLr0kK9HxCgMK6jpkkpOhpdPUJBV8ezPM7F2dzX85_4fQOcEFwaS-6YpO9b12m4JiwgtCC4bZAZoR3rC8rGtxiGZY0CrnjPNjdBJChzEmgpEZeviIftJx8qrP1GCyjVoPEF30agij8zEbvRvBxxZC5mx2uVTX2bu_yu9Vkg5rNbQRwik6sqoPcLa_c_T19Pi5eMmXb8-vi7tlrhlrYm6blQYKhvIVaSpaVwybujQltUZQoQjQighTYga84ZatjKqsTSMEbwgDVrI5utjlpqe-JwhRdm7yQ6qUlAjBRVkSnlTVTqW9C8GDlaNvN8r_SoLlFpjs5B6Y3AKThMoELPludz5IE35a8DLoFgYNpvWgozSu_SfhD7sFdcg</recordid><startdate>20190430</startdate><enddate>20190430</enddate><creator>Tozri, A.</creator><creator>Dhahri, E.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-8651-1255</orcidid></search><sort><creationdate>20190430</creationdate><title>Structural and magnetotransport properties of (La, Pr)-Ba manganites</title><author>Tozri, A. ; Dhahri, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-f7bce2ed28b17526530d64d42fd929a1e2519d403e878f3bda5ff18798713e343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Crystallography</topic><topic>Griffiths phase</topic><topic>Insulators</topic><topic>Low temperature resistance</topic><topic>Magnetic permeability</topic><topic>Magnetic properties</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Manganites</topic><topic>Martensite</topic><topic>Phase transitions</topic><topic>Praseodymium</topic><topic>Quenching</topic><topic>Rare earth elements</topic><topic>Resistivity minimum</topic><topic>Spin waves</topic><topic>Temperature coefficient of resistance</topic><topic>Transport properties</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tozri, A.</creatorcontrib><creatorcontrib>Dhahri, E.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tozri, A.</au><au>Dhahri, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and magnetotransport properties of (La, Pr)-Ba manganites</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2019-04-30</date><risdate>2019</risdate><volume>783</volume><spage>718</spage><epage>728</epage><pages>718-728</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>We report on the structural, magnetic and transport properties of the Pr-doped manganite (La1-xPrx)0.7Ba0.3MnO3 (x = 0.05 and 0.15). X-ray diffraction data demonstrate that both samples possess dual crystallographic phases: rhombohedral R3¯c and orthorhombic Pnma. This is due to the martensitic phase transition inherent to the pristine La0.7Ba0.3MnO3 sample, whose impact is seen as a second metal-insulator (MI) transition below the ordered temperature in electric measurements. Griffiths phase (GP)-like behavior in the inverse magnetic susceptibility (χ−1(T)) was observed only for Pr-15%. The origin of the Griffiths singularity could be understood in terms of the competing accommodation strain arising from martensite-like phase transition and quenched disorder. Interestingly, GP cannot be considered as a precursor for the magnetoresistance (MR), but can be essential for improving the temperature coefficient of resistance (TCR). At low temperature, the magnetization follows the Bloch's T3/2 law, while the resistivity shows a shallow minimum in both samples. Our work reveals that, at low temperature, the influence of the magnetic contribution of Pr3+ becomes relevant against the quenched disorder (σ2). These findings suggest that quenched disorder, strain field, and the coupling between rare-earth and Mn3+/Mn4+ sublattice are important factors in determining the structural and magneto-transport properties in manganite systems. [Display omitted] •Quenched disorder destroys the martensitic transition.•Two metal–insulator transitions are detected in the electrical resistivity.•Griffiths singularity improve the temperature coefficient of resistance.•A shallow minimum has been observed at low temperature resistivity.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2018.12.303</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8651-1255</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2019-04, Vol.783, p.718-728
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2199894418
source Elsevier ScienceDirect Journals
subjects Crystallography
Griffiths phase
Insulators
Low temperature resistance
Magnetic permeability
Magnetic properties
Magnetoresistance
Magnetoresistivity
Manganites
Martensite
Phase transitions
Praseodymium
Quenching
Rare earth elements
Resistivity minimum
Spin waves
Temperature coefficient of resistance
Transport properties
X-ray diffraction
title Structural and magnetotransport properties of (La, Pr)-Ba manganites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20magnetotransport%20properties%20of%20(La,%20Pr)-Ba%20manganites&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Tozri,%20A.&rft.date=2019-04-30&rft.volume=783&rft.spage=718&rft.epage=728&rft.pages=718-728&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2018.12.303&rft_dat=%3Cproquest_cross%3E2199894418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199894418&rft_id=info:pmid/&rft_els_id=S0925838818348515&rfr_iscdi=true