Local stress and strain in heterogeneously deformed aluminum: A comparison analysis by microhardness, electron microscopy and finite element modelling
The local stress and strain are analyzed in a heterogeneous microstructure induced by compression of aluminium rings under nearly full sticking conditions. This analysis is based on characterization of mechanical behavior and microstructure applying three complementary techniques covering multiple l...
Gespeichert in:
Veröffentlicht in: | International journal of plasticity 2019-04, Vol.115, p.93-110 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | |
container_start_page | 93 |
container_title | International journal of plasticity |
container_volume | 115 |
creator | Zhang, Xiaodan Nielsen, Chris V. Hansen, Niels Silva, Carlos M.A. Martins, Paulo A.F. |
description | The local stress and strain are analyzed in a heterogeneous microstructure induced by compression of aluminium rings under nearly full sticking conditions. This analysis is based on characterization of mechanical behavior and microstructure applying three complementary techniques covering multiple length scales: microhardness, electron microscopy (electron backscatter diffraction) and finite element modelling. The findings are underpinned by applying those techniques in an analysis of a homogeneous microstructure induced by compression of hot-extruded aluminium cylinders. The local stress and strain are estimated at 14 different positions in two rings representing large variations in strain. A comparison with the stress and strain in the homogeneously compressed cylinders related to the average spacing between deformation induced low and high angle boundaries, validates the characterization techniques and supports a hypothesis that the microstructure of local regions in a heterogeneous structure evolve in accordance with universal principles and mechanisms established for the evolution of the deformation microstructure of polycrystalline metals.
•For compressed cylinders the macroscopic stress and strain relate to the boundary spacing and the boundary area per unit volume.•The compressed rings showed large variations in stress, strain and microstructure when characterized by three complementary techniques.•Results for 14 areas (50 × 50 μm2) in two rings follow the same trend with good agreement between calculation and simulation.•The comparison of microstructural analysis and simulation shows the strength of using complementary multiple-length-scale techniques.•Local-region microstructure of a heterogeneous structure evolves according to principles for homogeneously deformed polycrystalline metals. |
doi_str_mv | 10.1016/j.ijplas.2018.11.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199894317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0749641918304698</els_id><sourcerecordid>2199894317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-3281416c1d36b52b1a3e26bdec8d9bc9330bcff45211b1d33e1f304d21d339083</originalsourceid><addsrcrecordid>eNp9UU1r3TAQFKWBvib9Bz0Ieq1draXnZ_VQCCH9gAe9NGchS-tERpZcyS74j-T3Vs7rubCgRZqZ1ewQ8h5YDQzaT2PtxtnrXDcMuhqgZiBekQN0J1k1cBSvyYGdhKxaAfINeZvzyBg7dhwO5PkcjfY0LwlzpjrYvdUu0FJPuGCKjxgwrtlv1OIQ04SWar9OLqzTZ3pLTZxmnVyOobC137LLtN_o5EyKTzrZUHQ_UvRollQwL_fZxHl7GTa44BbcnycMC52iRe9deLwhV4P2Gd_9O6_Jw9f7X3ffq_PPbz_ubs-V4R1bKt50IKA1YHnbH5seNMem7S2azsreSM5Zb4ZBHBuAvoA4wsCZsM3eS9bxa_Lhojun-HvFvKgxrqn4yKoBKTspOJwKSlxQ-99zwkHNyU06bQqY2hNQo7okoPYEFIAqCRTalwsNi4M_DpPKxmEwaF0q61A2uv8L_AXi6ZS9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199894317</pqid></control><display><type>article</type><title>Local stress and strain in heterogeneously deformed aluminum: A comparison analysis by microhardness, electron microscopy and finite element modelling</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zhang, Xiaodan ; Nielsen, Chris V. ; Hansen, Niels ; Silva, Carlos M.A. ; Martins, Paulo A.F.</creator><creatorcontrib>Zhang, Xiaodan ; Nielsen, Chris V. ; Hansen, Niels ; Silva, Carlos M.A. ; Martins, Paulo A.F.</creatorcontrib><description>The local stress and strain are analyzed in a heterogeneous microstructure induced by compression of aluminium rings under nearly full sticking conditions. This analysis is based on characterization of mechanical behavior and microstructure applying three complementary techniques covering multiple length scales: microhardness, electron microscopy (electron backscatter diffraction) and finite element modelling. The findings are underpinned by applying those techniques in an analysis of a homogeneous microstructure induced by compression of hot-extruded aluminium cylinders. The local stress and strain are estimated at 14 different positions in two rings representing large variations in strain. A comparison with the stress and strain in the homogeneously compressed cylinders related to the average spacing between deformation induced low and high angle boundaries, validates the characterization techniques and supports a hypothesis that the microstructure of local regions in a heterogeneous structure evolve in accordance with universal principles and mechanisms established for the evolution of the deformation microstructure of polycrystalline metals.
•For compressed cylinders the macroscopic stress and strain relate to the boundary spacing and the boundary area per unit volume.•The compressed rings showed large variations in stress, strain and microstructure when characterized by three complementary techniques.•Results for 14 areas (50 × 50 μm2) in two rings follow the same trend with good agreement between calculation and simulation.•The comparison of microstructural analysis and simulation shows the strength of using complementary multiple-length-scale techniques.•Local-region microstructure of a heterogeneous structure evolves according to principles for homogeneously deformed polycrystalline metals.</description><identifier>ISSN: 0749-6419</identifier><identifier>EISSN: 1879-2154</identifier><identifier>DOI: 10.1016/j.ijplas.2018.11.014</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Aluminium ; Aluminum ; Compacting ; Compression ; Cylinders ; Deformation mechanisms ; Electron backscatter diffraction ; Electron microscopy ; Finite element method ; Finite element modelling ; Heterogeneous structure ; Mathematical analysis ; Mathematical models ; Mechanical properties ; Microhardness ; Microscopy ; Microstructure ; Modelling ; Ring tests ; Strain analysis</subject><ispartof>International journal of plasticity, 2019-04, Vol.115, p.93-110</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-3281416c1d36b52b1a3e26bdec8d9bc9330bcff45211b1d33e1f304d21d339083</citedby><cites>FETCH-LOGICAL-c380t-3281416c1d36b52b1a3e26bdec8d9bc9330bcff45211b1d33e1f304d21d339083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijplas.2018.11.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Zhang, Xiaodan</creatorcontrib><creatorcontrib>Nielsen, Chris V.</creatorcontrib><creatorcontrib>Hansen, Niels</creatorcontrib><creatorcontrib>Silva, Carlos M.A.</creatorcontrib><creatorcontrib>Martins, Paulo A.F.</creatorcontrib><title>Local stress and strain in heterogeneously deformed aluminum: A comparison analysis by microhardness, electron microscopy and finite element modelling</title><title>International journal of plasticity</title><description>The local stress and strain are analyzed in a heterogeneous microstructure induced by compression of aluminium rings under nearly full sticking conditions. This analysis is based on characterization of mechanical behavior and microstructure applying three complementary techniques covering multiple length scales: microhardness, electron microscopy (electron backscatter diffraction) and finite element modelling. The findings are underpinned by applying those techniques in an analysis of a homogeneous microstructure induced by compression of hot-extruded aluminium cylinders. The local stress and strain are estimated at 14 different positions in two rings representing large variations in strain. A comparison with the stress and strain in the homogeneously compressed cylinders related to the average spacing between deformation induced low and high angle boundaries, validates the characterization techniques and supports a hypothesis that the microstructure of local regions in a heterogeneous structure evolve in accordance with universal principles and mechanisms established for the evolution of the deformation microstructure of polycrystalline metals.
•For compressed cylinders the macroscopic stress and strain relate to the boundary spacing and the boundary area per unit volume.•The compressed rings showed large variations in stress, strain and microstructure when characterized by three complementary techniques.•Results for 14 areas (50 × 50 μm2) in two rings follow the same trend with good agreement between calculation and simulation.•The comparison of microstructural analysis and simulation shows the strength of using complementary multiple-length-scale techniques.•Local-region microstructure of a heterogeneous structure evolves according to principles for homogeneously deformed polycrystalline metals.</description><subject>Aluminium</subject><subject>Aluminum</subject><subject>Compacting</subject><subject>Compression</subject><subject>Cylinders</subject><subject>Deformation mechanisms</subject><subject>Electron backscatter diffraction</subject><subject>Electron microscopy</subject><subject>Finite element method</subject><subject>Finite element modelling</subject><subject>Heterogeneous structure</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Microhardness</subject><subject>Microscopy</subject><subject>Microstructure</subject><subject>Modelling</subject><subject>Ring tests</subject><subject>Strain analysis</subject><issn>0749-6419</issn><issn>1879-2154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UU1r3TAQFKWBvib9Bz0Ieq1draXnZ_VQCCH9gAe9NGchS-tERpZcyS74j-T3Vs7rubCgRZqZ1ewQ8h5YDQzaT2PtxtnrXDcMuhqgZiBekQN0J1k1cBSvyYGdhKxaAfINeZvzyBg7dhwO5PkcjfY0LwlzpjrYvdUu0FJPuGCKjxgwrtlv1OIQ04SWar9OLqzTZ3pLTZxmnVyOobC137LLtN_o5EyKTzrZUHQ_UvRollQwL_fZxHl7GTa44BbcnycMC52iRe9deLwhV4P2Gd_9O6_Jw9f7X3ffq_PPbz_ubs-V4R1bKt50IKA1YHnbH5seNMem7S2azsreSM5Zb4ZBHBuAvoA4wsCZsM3eS9bxa_Lhojun-HvFvKgxrqn4yKoBKTspOJwKSlxQ-99zwkHNyU06bQqY2hNQo7okoPYEFIAqCRTalwsNi4M_DpPKxmEwaF0q61A2uv8L_AXi6ZS9</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Zhang, Xiaodan</creator><creator>Nielsen, Chris V.</creator><creator>Hansen, Niels</creator><creator>Silva, Carlos M.A.</creator><creator>Martins, Paulo A.F.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>201904</creationdate><title>Local stress and strain in heterogeneously deformed aluminum: A comparison analysis by microhardness, electron microscopy and finite element modelling</title><author>Zhang, Xiaodan ; Nielsen, Chris V. ; Hansen, Niels ; Silva, Carlos M.A. ; Martins, Paulo A.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-3281416c1d36b52b1a3e26bdec8d9bc9330bcff45211b1d33e1f304d21d339083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminium</topic><topic>Aluminum</topic><topic>Compacting</topic><topic>Compression</topic><topic>Cylinders</topic><topic>Deformation mechanisms</topic><topic>Electron backscatter diffraction</topic><topic>Electron microscopy</topic><topic>Finite element method</topic><topic>Finite element modelling</topic><topic>Heterogeneous structure</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Microhardness</topic><topic>Microscopy</topic><topic>Microstructure</topic><topic>Modelling</topic><topic>Ring tests</topic><topic>Strain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaodan</creatorcontrib><creatorcontrib>Nielsen, Chris V.</creatorcontrib><creatorcontrib>Hansen, Niels</creatorcontrib><creatorcontrib>Silva, Carlos M.A.</creatorcontrib><creatorcontrib>Martins, Paulo A.F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of plasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiaodan</au><au>Nielsen, Chris V.</au><au>Hansen, Niels</au><au>Silva, Carlos M.A.</au><au>Martins, Paulo A.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local stress and strain in heterogeneously deformed aluminum: A comparison analysis by microhardness, electron microscopy and finite element modelling</atitle><jtitle>International journal of plasticity</jtitle><date>2019-04</date><risdate>2019</risdate><volume>115</volume><spage>93</spage><epage>110</epage><pages>93-110</pages><issn>0749-6419</issn><eissn>1879-2154</eissn><abstract>The local stress and strain are analyzed in a heterogeneous microstructure induced by compression of aluminium rings under nearly full sticking conditions. This analysis is based on characterization of mechanical behavior and microstructure applying three complementary techniques covering multiple length scales: microhardness, electron microscopy (electron backscatter diffraction) and finite element modelling. The findings are underpinned by applying those techniques in an analysis of a homogeneous microstructure induced by compression of hot-extruded aluminium cylinders. The local stress and strain are estimated at 14 different positions in two rings representing large variations in strain. A comparison with the stress and strain in the homogeneously compressed cylinders related to the average spacing between deformation induced low and high angle boundaries, validates the characterization techniques and supports a hypothesis that the microstructure of local regions in a heterogeneous structure evolve in accordance with universal principles and mechanisms established for the evolution of the deformation microstructure of polycrystalline metals.
•For compressed cylinders the macroscopic stress and strain relate to the boundary spacing and the boundary area per unit volume.•The compressed rings showed large variations in stress, strain and microstructure when characterized by three complementary techniques.•Results for 14 areas (50 × 50 μm2) in two rings follow the same trend with good agreement between calculation and simulation.•The comparison of microstructural analysis and simulation shows the strength of using complementary multiple-length-scale techniques.•Local-region microstructure of a heterogeneous structure evolves according to principles for homogeneously deformed polycrystalline metals.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijplas.2018.11.014</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-6419 |
ispartof | International journal of plasticity, 2019-04, Vol.115, p.93-110 |
issn | 0749-6419 1879-2154 |
language | eng |
recordid | cdi_proquest_journals_2199894317 |
source | Access via ScienceDirect (Elsevier) |
subjects | Aluminium Aluminum Compacting Compression Cylinders Deformation mechanisms Electron backscatter diffraction Electron microscopy Finite element method Finite element modelling Heterogeneous structure Mathematical analysis Mathematical models Mechanical properties Microhardness Microscopy Microstructure Modelling Ring tests Strain analysis |
title | Local stress and strain in heterogeneously deformed aluminum: A comparison analysis by microhardness, electron microscopy and finite element modelling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T13%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20stress%20and%20strain%20in%20heterogeneously%20deformed%20aluminum:%20A%20comparison%20analysis%20by%20microhardness,%20electron%20microscopy%20and%20finite%20element%20modelling&rft.jtitle=International%20journal%20of%20plasticity&rft.au=Zhang,%20Xiaodan&rft.date=2019-04&rft.volume=115&rft.spage=93&rft.epage=110&rft.pages=93-110&rft.issn=0749-6419&rft.eissn=1879-2154&rft_id=info:doi/10.1016/j.ijplas.2018.11.014&rft_dat=%3Cproquest_cross%3E2199894317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199894317&rft_id=info:pmid/&rft_els_id=S0749641918304698&rfr_iscdi=true |