The smallest subgroup whose invariants are hit by the Steenrod algebra

Let V be a k-dimensional ${\mathbb{F}_2}$ -vector space and let W be an n-dimensional vector subspace of V. Denote by GL(n, ${\mathbb{F}_2}$ ) • 1 k-n the subgroup of GL(V) consisting of all isomorphisms ϕ:V → V with ϕ(W) = W and ϕ(v) ≡ v (mod W) for every v ∈ V. We show that GL(3, ${\mathbb{F}_2}$...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2007-01, Vol.142 (1), p.63-71
Hauptverfasser: HƯNG, NGUYỄN H. V., LUONG, TRAN DINH
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let V be a k-dimensional ${\mathbb{F}_2}$ -vector space and let W be an n-dimensional vector subspace of V. Denote by GL(n, ${\mathbb{F}_2}$ ) • 1 k-n the subgroup of GL(V) consisting of all isomorphisms ϕ:V → V with ϕ(W) = W and ϕ(v) ≡ v (mod W) for every v ∈ V. We show that GL(3, ${\mathbb{F}_2}$ ) • 1 k-3 is, in some sense, the smallest subgroup of GL(V)≅ GL(k, ${\mathbb{F}_2})$ , whose invariants are hit by the Steenrod algebra acting on the polynomial algebra, ${\mathbb{F}_2})\cong{\mathbb{F}_2}[x_{1},\ldots,x_{k}]$ . The result is some aspect of an algebraic version of the classical conjecture that the only spherical classes in Q 0 S 0 are the elements of Hopf invariant one and those of Kervaire invariant one.
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004106009637