The smallest subgroup whose invariants are hit by the Steenrod algebra
Let V be a k-dimensional ${\mathbb{F}_2}$ -vector space and let W be an n-dimensional vector subspace of V. Denote by GL(n, ${\mathbb{F}_2}$ ) • 1 k-n the subgroup of GL(V) consisting of all isomorphisms ϕ:V → V with ϕ(W) = W and ϕ(v) ≡ v (mod W) for every v ∈ V. We show that GL(3, ${\mathbb{F}_2}$...
Gespeichert in:
Veröffentlicht in: | Mathematical proceedings of the Cambridge Philosophical Society 2007-01, Vol.142 (1), p.63-71 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let V be a k-dimensional
${\mathbb{F}_2}$
-vector space and let W be an n-dimensional vector subspace of V. Denote by GL(n,
${\mathbb{F}_2}$
) • 1
k-n
the subgroup of GL(V) consisting of all isomorphisms ϕ:V → V with ϕ(W) = W and ϕ(v) ≡ v (mod W) for every v ∈ V. We show that GL(3,
${\mathbb{F}_2}$
) • 1
k-3
is, in some sense, the smallest subgroup of GL(V)≅ GL(k,
${\mathbb{F}_2})$
, whose invariants are hit by the Steenrod algebra acting on the polynomial algebra,
${\mathbb{F}_2})\cong{\mathbb{F}_2}[x_{1},\ldots,x_{k}]$
. The result is some aspect of an algebraic version of the classical conjecture that the only spherical classes in
Q
0
S
0
are the elements of Hopf invariant one and those of Kervaire invariant one. |
---|---|
ISSN: | 0305-0041 1469-8064 |
DOI: | 10.1017/S0305004106009637 |