A tight closure analogue of analytic spread

An analogue of the theory of integral closure and reductions is developed for a more general class of closures, called Nakayama closures. It is shown that tight closure is a Nakayama closure by proving a “Nakayama lemma for tight closure”. Then, after strengthening A. Vraciu's theory of *-indep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2005-09, Vol.139 (2), p.371-383
1. Verfasser: EPSTEIN, NEIL M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 383
container_issue 2
container_start_page 371
container_title Mathematical proceedings of the Cambridge Philosophical Society
container_volume 139
creator EPSTEIN, NEIL M.
description An analogue of the theory of integral closure and reductions is developed for a more general class of closures, called Nakayama closures. It is shown that tight closure is a Nakayama closure by proving a “Nakayama lemma for tight closure”. Then, after strengthening A. Vraciu's theory of *-independence and the special part of tight closure, it is shown that all minimal *-reductions of an ideal in an analytically irreducible excellent local ring of positive characteristic have the same minimal number of generators. This number is called the *-spread of the ideal, by analogy with the notion of analytic spread.
doi_str_mv 10.1017/S0305004105008546
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_219975449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0305004105008546</cupid><sourcerecordid>1402681861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-a2b7907a4ab2f75ee9920f9ee8570141633a8818ecb4c9742e507b0a1ea87b973</originalsourceid><addsrcrecordid>eNp1UEFOwzAQtBBIlMIDuEVcUWA3tmP7WAoUUCVUFS5cLCfdlJSWFDuR6O9JaAUHxGV3pZnZGQ1jpwgXCKgup8BBAgjsppYi3WM9FKmJNaRin_U6OO7wQ3YUwgIAuEHosfNBVJfz1zrKl1VoPEXu3S2reUNRVXzfm7rMo7D25GbH7KBwy0Anu91nz7c3T8O7ePw4uh8OxnHOjapjl2TKgHLCZUmhJJExCRSGSEsFKDDl3GmNmvJM5EaJhCSoDByS0yozivfZ2fbv2lcfDYXaLqrGt1mCTdAYJYUwLQm3pNxXIXgq7NqXK-c3FsF2ldg_lbSaeKspQ02fPwLn32yquJI2HU3sdCKu9cvDyF61fL7zcKvMl7M5_Sb53-ULekZvgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219975449</pqid></control><display><type>article</type><title>A tight closure analogue of analytic spread</title><source>Cambridge Journals</source><creator>EPSTEIN, NEIL M.</creator><creatorcontrib>EPSTEIN, NEIL M.</creatorcontrib><description>An analogue of the theory of integral closure and reductions is developed for a more general class of closures, called Nakayama closures. It is shown that tight closure is a Nakayama closure by proving a “Nakayama lemma for tight closure”. Then, after strengthening A. Vraciu's theory of *-independence and the special part of tight closure, it is shown that all minimal *-reductions of an ideal in an analytically irreducible excellent local ring of positive characteristic have the same minimal number of generators. This number is called the *-spread of the ideal, by analogy with the notion of analytic spread.</description><identifier>ISSN: 0305-0041</identifier><identifier>EISSN: 1469-8064</identifier><identifier>DOI: 10.1017/S0305004105008546</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Mathematical proceedings of the Cambridge Philosophical Society, 2005-09, Vol.139 (2), p.371-383</ispartof><rights>2005 Cambridge Philosophical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-a2b7907a4ab2f75ee9920f9ee8570141633a8818ecb4c9742e507b0a1ea87b973</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0305004105008546/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>EPSTEIN, NEIL M.</creatorcontrib><title>A tight closure analogue of analytic spread</title><title>Mathematical proceedings of the Cambridge Philosophical Society</title><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><description>An analogue of the theory of integral closure and reductions is developed for a more general class of closures, called Nakayama closures. It is shown that tight closure is a Nakayama closure by proving a “Nakayama lemma for tight closure”. Then, after strengthening A. Vraciu's theory of *-independence and the special part of tight closure, it is shown that all minimal *-reductions of an ideal in an analytically irreducible excellent local ring of positive characteristic have the same minimal number of generators. This number is called the *-spread of the ideal, by analogy with the notion of analytic spread.</description><issn>0305-0041</issn><issn>1469-8064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UEFOwzAQtBBIlMIDuEVcUWA3tmP7WAoUUCVUFS5cLCfdlJSWFDuR6O9JaAUHxGV3pZnZGQ1jpwgXCKgup8BBAgjsppYi3WM9FKmJNaRin_U6OO7wQ3YUwgIAuEHosfNBVJfz1zrKl1VoPEXu3S2reUNRVXzfm7rMo7D25GbH7KBwy0Anu91nz7c3T8O7ePw4uh8OxnHOjapjl2TKgHLCZUmhJJExCRSGSEsFKDDl3GmNmvJM5EaJhCSoDByS0yozivfZ2fbv2lcfDYXaLqrGt1mCTdAYJYUwLQm3pNxXIXgq7NqXK-c3FsF2ldg_lbSaeKspQ02fPwLn32yquJI2HU3sdCKu9cvDyF61fL7zcKvMl7M5_Sb53-ULekZvgw</recordid><startdate>200509</startdate><enddate>200509</enddate><creator>EPSTEIN, NEIL M.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200509</creationdate><title>A tight closure analogue of analytic spread</title><author>EPSTEIN, NEIL M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-a2b7907a4ab2f75ee9920f9ee8570141633a8818ecb4c9742e507b0a1ea87b973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>EPSTEIN, NEIL M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>EPSTEIN, NEIL M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A tight closure analogue of analytic spread</atitle><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><date>2005-09</date><risdate>2005</risdate><volume>139</volume><issue>2</issue><spage>371</spage><epage>383</epage><pages>371-383</pages><issn>0305-0041</issn><eissn>1469-8064</eissn><abstract>An analogue of the theory of integral closure and reductions is developed for a more general class of closures, called Nakayama closures. It is shown that tight closure is a Nakayama closure by proving a “Nakayama lemma for tight closure”. Then, after strengthening A. Vraciu's theory of *-independence and the special part of tight closure, it is shown that all minimal *-reductions of an ideal in an analytically irreducible excellent local ring of positive characteristic have the same minimal number of generators. This number is called the *-spread of the ideal, by analogy with the notion of analytic spread.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0305004105008546</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-0041
ispartof Mathematical proceedings of the Cambridge Philosophical Society, 2005-09, Vol.139 (2), p.371-383
issn 0305-0041
1469-8064
language eng
recordid cdi_proquest_journals_219975449
source Cambridge Journals
title A tight closure analogue of analytic spread
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A26%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20tight%20closure%20analogue%20of%20analytic%20spread&rft.jtitle=Mathematical%20proceedings%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=EPSTEIN,%20NEIL%20M.&rft.date=2005-09&rft.volume=139&rft.issue=2&rft.spage=371&rft.epage=383&rft.pages=371-383&rft.issn=0305-0041&rft.eissn=1469-8064&rft_id=info:doi/10.1017/S0305004105008546&rft_dat=%3Cproquest_cross%3E1402681861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219975449&rft_id=info:pmid/&rft_cupid=10_1017_S0305004105008546&rfr_iscdi=true