Forensic Analyses of Stress-Strain Diagrams to Evaluate Contributions from Microstructure

The conventional characterization of work-hardening is to approximate the stress-strain diagram using the empirical curve-fitting of Hollomon or Voce. The new method uses the Taylor slip analyses to derive a functional form which is optimally fitted to the data. This constitutive relations analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2018-12, Vol.941, p.2270-2277
Hauptverfasser: Saimoto, Shigeo, Niewczas, Marek, Langille, Michael R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2277
container_issue
container_start_page 2270
container_title Materials science forum
container_volume 941
creator Saimoto, Shigeo
Niewczas, Marek
Langille, Michael R.
description The conventional characterization of work-hardening is to approximate the stress-strain diagram using the empirical curve-fitting of Hollomon or Voce. The new method uses the Taylor slip analyses to derive a functional form which is optimally fitted to the data. This constitutive relations analysis (CRA) duplicates the data using at least two fit loci. The fit parameters relate to the slip motion within the microstructure and hence its interpretation reveals the possible dynamic shape-change reactions. The fit-process defines a new yield stress which separates the yielding from the deformation mechanisms at large strains that breaks up into two regions separated by intersection parameters. The applications of CRA to nanovoid formation and growth leading to ductile failure, plane stress yield locus prediction using tensile tests and decoding the stress-strain diagram for age-hardened aluminum alloys have been successful. Using super-pure aluminum, this study confirms that CRA is based on crystal plasticity principles and that CRA can predict the correlation of the obstacle strength factor, α, with work-hardening, hence permitting conversion of flow stress at given strains to obstacle density. The derived results show that the inherent annihilation process and the changing strength factor are coordinated to result in a self-consistent constitutive relation.
doi_str_mv 10.4028/www.scientific.net/MSF.941.2270
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199308158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199308158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7fd780d45bd2a9acf993afb098283a9ddc1499648f00d3573c10f098248784233</originalsourceid><addsrcrecordid>eNqNkMFOAyEURYnRxFr9BxIXrmYKzDADK9NUqyZtXFQXrghlQGlaqMDY9O-lqUm3ru7i3Zz33gHgDqOyRoSNdrtdGZXVLlljVel0Gs0X05LXuCSkRWdggJuGFLyl5BwMEKG0oHXbXIKrGFcIVZjhZgA-pj5oF62CYyfX-6gj9AYuUtAxFjmkdfDBys8gNxEmDx9_5LqXScOJdynYZZ-sdxGa4DdwblXwMYVepT7oa3Bh5Drqm78cgvfp49vkuZi9Pr1MxrNCVZSnojVdy1BX02VHJJfKcF5Js0ScEVZJ3nUK15w3NTMIdRVtK4WROUxr1rKaVNUQ3B652-C_ex2TWPk-5GeiIDjDEMOU5db9sXU4MQZtxDbYjQx7gZE4-BTZpzj5FNmnyD5F9ikOPjNhfCRkKS4mrb5Oi_7L-AXtgIhU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199308158</pqid></control><display><type>article</type><title>Forensic Analyses of Stress-Strain Diagrams to Evaluate Contributions from Microstructure</title><source>ProQuest Central Essentials</source><source>ProQuest Central Student</source><source>ProQuest Central (Alumni)</source><source>Scientific.net Journals</source><creator>Saimoto, Shigeo ; Niewczas, Marek ; Langille, Michael R.</creator><creatorcontrib>Saimoto, Shigeo ; Niewczas, Marek ; Langille, Michael R.</creatorcontrib><description>The conventional characterization of work-hardening is to approximate the stress-strain diagram using the empirical curve-fitting of Hollomon or Voce. The new method uses the Taylor slip analyses to derive a functional form which is optimally fitted to the data. This constitutive relations analysis (CRA) duplicates the data using at least two fit loci. The fit parameters relate to the slip motion within the microstructure and hence its interpretation reveals the possible dynamic shape-change reactions. The fit-process defines a new yield stress which separates the yielding from the deformation mechanisms at large strains that breaks up into two regions separated by intersection parameters. The applications of CRA to nanovoid formation and growth leading to ductile failure, plane stress yield locus prediction using tensile tests and decoding the stress-strain diagram for age-hardened aluminum alloys have been successful. Using super-pure aluminum, this study confirms that CRA is based on crystal plasticity principles and that CRA can predict the correlation of the obstacle strength factor, α, with work-hardening, hence permitting conversion of flow stress at given strains to obstacle density. The derived results show that the inherent annihilation process and the changing strength factor are coordinated to result in a self-consistent constitutive relation.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.941.2270</identifier><language>eng</language><publisher>Pfaffikon: Trans Tech Publications Ltd</publisher><subject>Age hardening ; Aluminum ; Aluminum base alloys ; Constitutive relationships ; Curve fitting ; Decoding ; Deformation mechanisms ; Empirical analysis ; Loci ; Microstructure ; Parameters ; Plane stress ; Slip ; Strain analysis ; Stress-strain curves ; Stress-strain relationships ; Tensile tests ; Yield strength ; Yield stress</subject><ispartof>Materials science forum, 2018-12, Vol.941, p.2270-2277</ispartof><rights>2018 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-7fd780d45bd2a9acf993afb098283a9ddc1499648f00d3573c10f098248784233</citedby><cites>FETCH-LOGICAL-c359t-7fd780d45bd2a9acf993afb098283a9ddc1499648f00d3573c10f098248784233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4559?width=600</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2199308158?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21389,21390,23256,27924,27925,33530,33703,34314,43659,43787,44067</link.rule.ids></links><search><creatorcontrib>Saimoto, Shigeo</creatorcontrib><creatorcontrib>Niewczas, Marek</creatorcontrib><creatorcontrib>Langille, Michael R.</creatorcontrib><title>Forensic Analyses of Stress-Strain Diagrams to Evaluate Contributions from Microstructure</title><title>Materials science forum</title><description>The conventional characterization of work-hardening is to approximate the stress-strain diagram using the empirical curve-fitting of Hollomon or Voce. The new method uses the Taylor slip analyses to derive a functional form which is optimally fitted to the data. This constitutive relations analysis (CRA) duplicates the data using at least two fit loci. The fit parameters relate to the slip motion within the microstructure and hence its interpretation reveals the possible dynamic shape-change reactions. The fit-process defines a new yield stress which separates the yielding from the deformation mechanisms at large strains that breaks up into two regions separated by intersection parameters. The applications of CRA to nanovoid formation and growth leading to ductile failure, plane stress yield locus prediction using tensile tests and decoding the stress-strain diagram for age-hardened aluminum alloys have been successful. Using super-pure aluminum, this study confirms that CRA is based on crystal plasticity principles and that CRA can predict the correlation of the obstacle strength factor, α, with work-hardening, hence permitting conversion of flow stress at given strains to obstacle density. The derived results show that the inherent annihilation process and the changing strength factor are coordinated to result in a self-consistent constitutive relation.</description><subject>Age hardening</subject><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Constitutive relationships</subject><subject>Curve fitting</subject><subject>Decoding</subject><subject>Deformation mechanisms</subject><subject>Empirical analysis</subject><subject>Loci</subject><subject>Microstructure</subject><subject>Parameters</subject><subject>Plane stress</subject><subject>Slip</subject><subject>Strain analysis</subject><subject>Stress-strain curves</subject><subject>Stress-strain relationships</subject><subject>Tensile tests</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkMFOAyEURYnRxFr9BxIXrmYKzDADK9NUqyZtXFQXrghlQGlaqMDY9O-lqUm3ru7i3Zz33gHgDqOyRoSNdrtdGZXVLlljVel0Gs0X05LXuCSkRWdggJuGFLyl5BwMEKG0oHXbXIKrGFcIVZjhZgA-pj5oF62CYyfX-6gj9AYuUtAxFjmkdfDBys8gNxEmDx9_5LqXScOJdynYZZ-sdxGa4DdwblXwMYVepT7oa3Bh5Drqm78cgvfp49vkuZi9Pr1MxrNCVZSnojVdy1BX02VHJJfKcF5Js0ScEVZJ3nUK15w3NTMIdRVtK4WROUxr1rKaVNUQ3B652-C_ex2TWPk-5GeiIDjDEMOU5db9sXU4MQZtxDbYjQx7gZE4-BTZpzj5FNmnyD5F9ikOPjNhfCRkKS4mrb5Oi_7L-AXtgIhU</recordid><startdate>20181226</startdate><enddate>20181226</enddate><creator>Saimoto, Shigeo</creator><creator>Niewczas, Marek</creator><creator>Langille, Michael R.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20181226</creationdate><title>Forensic Analyses of Stress-Strain Diagrams to Evaluate Contributions from Microstructure</title><author>Saimoto, Shigeo ; Niewczas, Marek ; Langille, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7fd780d45bd2a9acf993afb098283a9ddc1499648f00d3573c10f098248784233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Age hardening</topic><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Constitutive relationships</topic><topic>Curve fitting</topic><topic>Decoding</topic><topic>Deformation mechanisms</topic><topic>Empirical analysis</topic><topic>Loci</topic><topic>Microstructure</topic><topic>Parameters</topic><topic>Plane stress</topic><topic>Slip</topic><topic>Strain analysis</topic><topic>Stress-strain curves</topic><topic>Stress-strain relationships</topic><topic>Tensile tests</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saimoto, Shigeo</creatorcontrib><creatorcontrib>Niewczas, Marek</creatorcontrib><creatorcontrib>Langille, Michael R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saimoto, Shigeo</au><au>Niewczas, Marek</au><au>Langille, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forensic Analyses of Stress-Strain Diagrams to Evaluate Contributions from Microstructure</atitle><jtitle>Materials science forum</jtitle><date>2018-12-26</date><risdate>2018</risdate><volume>941</volume><spage>2270</spage><epage>2277</epage><pages>2270-2277</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>The conventional characterization of work-hardening is to approximate the stress-strain diagram using the empirical curve-fitting of Hollomon or Voce. The new method uses the Taylor slip analyses to derive a functional form which is optimally fitted to the data. This constitutive relations analysis (CRA) duplicates the data using at least two fit loci. The fit parameters relate to the slip motion within the microstructure and hence its interpretation reveals the possible dynamic shape-change reactions. The fit-process defines a new yield stress which separates the yielding from the deformation mechanisms at large strains that breaks up into two regions separated by intersection parameters. The applications of CRA to nanovoid formation and growth leading to ductile failure, plane stress yield locus prediction using tensile tests and decoding the stress-strain diagram for age-hardened aluminum alloys have been successful. Using super-pure aluminum, this study confirms that CRA is based on crystal plasticity principles and that CRA can predict the correlation of the obstacle strength factor, α, with work-hardening, hence permitting conversion of flow stress at given strains to obstacle density. The derived results show that the inherent annihilation process and the changing strength factor are coordinated to result in a self-consistent constitutive relation.</abstract><cop>Pfaffikon</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.941.2270</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0255-5476
ispartof Materials science forum, 2018-12, Vol.941, p.2270-2277
issn 0255-5476
1662-9752
1662-9752
language eng
recordid cdi_proquest_journals_2199308158
source ProQuest Central Essentials; ProQuest Central Student; ProQuest Central (Alumni); Scientific.net Journals
subjects Age hardening
Aluminum
Aluminum base alloys
Constitutive relationships
Curve fitting
Decoding
Deformation mechanisms
Empirical analysis
Loci
Microstructure
Parameters
Plane stress
Slip
Strain analysis
Stress-strain curves
Stress-strain relationships
Tensile tests
Yield strength
Yield stress
title Forensic Analyses of Stress-Strain Diagrams to Evaluate Contributions from Microstructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A31%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forensic%20Analyses%20of%20Stress-Strain%20Diagrams%20to%20Evaluate%20Contributions%20from%20Microstructure&rft.jtitle=Materials%20science%20forum&rft.au=Saimoto,%20Shigeo&rft.date=2018-12-26&rft.volume=941&rft.spage=2270&rft.epage=2277&rft.pages=2270-2277&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.941.2270&rft_dat=%3Cproquest_cross%3E2199308158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199308158&rft_id=info:pmid/&rfr_iscdi=true