Forensic Analyses of Stress-Strain Diagrams to Evaluate Contributions from Microstructure
The conventional characterization of work-hardening is to approximate the stress-strain diagram using the empirical curve-fitting of Hollomon or Voce. The new method uses the Taylor slip analyses to derive a functional form which is optimally fitted to the data. This constitutive relations analysis...
Gespeichert in:
Veröffentlicht in: | Materials science forum 2018-12, Vol.941, p.2270-2277 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2277 |
---|---|
container_issue | |
container_start_page | 2270 |
container_title | Materials science forum |
container_volume | 941 |
creator | Saimoto, Shigeo Niewczas, Marek Langille, Michael R. |
description | The conventional characterization of work-hardening is to approximate the stress-strain diagram using the empirical curve-fitting of Hollomon or Voce. The new method uses the Taylor slip analyses to derive a functional form which is optimally fitted to the data. This constitutive relations analysis (CRA) duplicates the data using at least two fit loci. The fit parameters relate to the slip motion within the microstructure and hence its interpretation reveals the possible dynamic shape-change reactions. The fit-process defines a new yield stress which separates the yielding from the deformation mechanisms at large strains that breaks up into two regions separated by intersection parameters. The applications of CRA to nanovoid formation and growth leading to ductile failure, plane stress yield locus prediction using tensile tests and decoding the stress-strain diagram for age-hardened aluminum alloys have been successful. Using super-pure aluminum, this study confirms that CRA is based on crystal plasticity principles and that CRA can predict the correlation of the obstacle strength factor, α, with work-hardening, hence permitting conversion of flow stress at given strains to obstacle density. The derived results show that the inherent annihilation process and the changing strength factor are coordinated to result in a self-consistent constitutive relation. |
doi_str_mv | 10.4028/www.scientific.net/MSF.941.2270 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199308158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199308158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-7fd780d45bd2a9acf993afb098283a9ddc1499648f00d3573c10f098248784233</originalsourceid><addsrcrecordid>eNqNkMFOAyEURYnRxFr9BxIXrmYKzDADK9NUqyZtXFQXrghlQGlaqMDY9O-lqUm3ru7i3Zz33gHgDqOyRoSNdrtdGZXVLlljVel0Gs0X05LXuCSkRWdggJuGFLyl5BwMEKG0oHXbXIKrGFcIVZjhZgA-pj5oF62CYyfX-6gj9AYuUtAxFjmkdfDBys8gNxEmDx9_5LqXScOJdynYZZ-sdxGa4DdwblXwMYVepT7oa3Bh5Drqm78cgvfp49vkuZi9Pr1MxrNCVZSnojVdy1BX02VHJJfKcF5Js0ScEVZJ3nUK15w3NTMIdRVtK4WROUxr1rKaVNUQ3B652-C_ex2TWPk-5GeiIDjDEMOU5db9sXU4MQZtxDbYjQx7gZE4-BTZpzj5FNmnyD5F9ikOPjNhfCRkKS4mrb5Oi_7L-AXtgIhU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199308158</pqid></control><display><type>article</type><title>Forensic Analyses of Stress-Strain Diagrams to Evaluate Contributions from Microstructure</title><source>ProQuest Central Essentials</source><source>ProQuest Central Student</source><source>ProQuest Central (Alumni)</source><source>Scientific.net Journals</source><creator>Saimoto, Shigeo ; Niewczas, Marek ; Langille, Michael R.</creator><creatorcontrib>Saimoto, Shigeo ; Niewczas, Marek ; Langille, Michael R.</creatorcontrib><description>The conventional characterization of work-hardening is to approximate the stress-strain diagram using the empirical curve-fitting of Hollomon or Voce. The new method uses the Taylor slip analyses to derive a functional form which is optimally fitted to the data. This constitutive relations analysis (CRA) duplicates the data using at least two fit loci. The fit parameters relate to the slip motion within the microstructure and hence its interpretation reveals the possible dynamic shape-change reactions. The fit-process defines a new yield stress which separates the yielding from the deformation mechanisms at large strains that breaks up into two regions separated by intersection parameters. The applications of CRA to nanovoid formation and growth leading to ductile failure, plane stress yield locus prediction using tensile tests and decoding the stress-strain diagram for age-hardened aluminum alloys have been successful. Using super-pure aluminum, this study confirms that CRA is based on crystal plasticity principles and that CRA can predict the correlation of the obstacle strength factor, α, with work-hardening, hence permitting conversion of flow stress at given strains to obstacle density. The derived results show that the inherent annihilation process and the changing strength factor are coordinated to result in a self-consistent constitutive relation.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.941.2270</identifier><language>eng</language><publisher>Pfaffikon: Trans Tech Publications Ltd</publisher><subject>Age hardening ; Aluminum ; Aluminum base alloys ; Constitutive relationships ; Curve fitting ; Decoding ; Deformation mechanisms ; Empirical analysis ; Loci ; Microstructure ; Parameters ; Plane stress ; Slip ; Strain analysis ; Stress-strain curves ; Stress-strain relationships ; Tensile tests ; Yield strength ; Yield stress</subject><ispartof>Materials science forum, 2018-12, Vol.941, p.2270-2277</ispartof><rights>2018 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-7fd780d45bd2a9acf993afb098283a9ddc1499648f00d3573c10f098248784233</citedby><cites>FETCH-LOGICAL-c359t-7fd780d45bd2a9acf993afb098283a9ddc1499648f00d3573c10f098248784233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4559?width=600</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2199308158?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21389,21390,23256,27924,27925,33530,33703,34314,43659,43787,44067</link.rule.ids></links><search><creatorcontrib>Saimoto, Shigeo</creatorcontrib><creatorcontrib>Niewczas, Marek</creatorcontrib><creatorcontrib>Langille, Michael R.</creatorcontrib><title>Forensic Analyses of Stress-Strain Diagrams to Evaluate Contributions from Microstructure</title><title>Materials science forum</title><description>The conventional characterization of work-hardening is to approximate the stress-strain diagram using the empirical curve-fitting of Hollomon or Voce. The new method uses the Taylor slip analyses to derive a functional form which is optimally fitted to the data. This constitutive relations analysis (CRA) duplicates the data using at least two fit loci. The fit parameters relate to the slip motion within the microstructure and hence its interpretation reveals the possible dynamic shape-change reactions. The fit-process defines a new yield stress which separates the yielding from the deformation mechanisms at large strains that breaks up into two regions separated by intersection parameters. The applications of CRA to nanovoid formation and growth leading to ductile failure, plane stress yield locus prediction using tensile tests and decoding the stress-strain diagram for age-hardened aluminum alloys have been successful. Using super-pure aluminum, this study confirms that CRA is based on crystal plasticity principles and that CRA can predict the correlation of the obstacle strength factor, α, with work-hardening, hence permitting conversion of flow stress at given strains to obstacle density. The derived results show that the inherent annihilation process and the changing strength factor are coordinated to result in a self-consistent constitutive relation.</description><subject>Age hardening</subject><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Constitutive relationships</subject><subject>Curve fitting</subject><subject>Decoding</subject><subject>Deformation mechanisms</subject><subject>Empirical analysis</subject><subject>Loci</subject><subject>Microstructure</subject><subject>Parameters</subject><subject>Plane stress</subject><subject>Slip</subject><subject>Strain analysis</subject><subject>Stress-strain curves</subject><subject>Stress-strain relationships</subject><subject>Tensile tests</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkMFOAyEURYnRxFr9BxIXrmYKzDADK9NUqyZtXFQXrghlQGlaqMDY9O-lqUm3ru7i3Zz33gHgDqOyRoSNdrtdGZXVLlljVel0Gs0X05LXuCSkRWdggJuGFLyl5BwMEKG0oHXbXIKrGFcIVZjhZgA-pj5oF62CYyfX-6gj9AYuUtAxFjmkdfDBys8gNxEmDx9_5LqXScOJdynYZZ-sdxGa4DdwblXwMYVepT7oa3Bh5Drqm78cgvfp49vkuZi9Pr1MxrNCVZSnojVdy1BX02VHJJfKcF5Js0ScEVZJ3nUK15w3NTMIdRVtK4WROUxr1rKaVNUQ3B652-C_ex2TWPk-5GeiIDjDEMOU5db9sXU4MQZtxDbYjQx7gZE4-BTZpzj5FNmnyD5F9ikOPjNhfCRkKS4mrb5Oi_7L-AXtgIhU</recordid><startdate>20181226</startdate><enddate>20181226</enddate><creator>Saimoto, Shigeo</creator><creator>Niewczas, Marek</creator><creator>Langille, Michael R.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20181226</creationdate><title>Forensic Analyses of Stress-Strain Diagrams to Evaluate Contributions from Microstructure</title><author>Saimoto, Shigeo ; Niewczas, Marek ; Langille, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-7fd780d45bd2a9acf993afb098283a9ddc1499648f00d3573c10f098248784233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Age hardening</topic><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Constitutive relationships</topic><topic>Curve fitting</topic><topic>Decoding</topic><topic>Deformation mechanisms</topic><topic>Empirical analysis</topic><topic>Loci</topic><topic>Microstructure</topic><topic>Parameters</topic><topic>Plane stress</topic><topic>Slip</topic><topic>Strain analysis</topic><topic>Stress-strain curves</topic><topic>Stress-strain relationships</topic><topic>Tensile tests</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saimoto, Shigeo</creatorcontrib><creatorcontrib>Niewczas, Marek</creatorcontrib><creatorcontrib>Langille, Michael R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saimoto, Shigeo</au><au>Niewczas, Marek</au><au>Langille, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forensic Analyses of Stress-Strain Diagrams to Evaluate Contributions from Microstructure</atitle><jtitle>Materials science forum</jtitle><date>2018-12-26</date><risdate>2018</risdate><volume>941</volume><spage>2270</spage><epage>2277</epage><pages>2270-2277</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>The conventional characterization of work-hardening is to approximate the stress-strain diagram using the empirical curve-fitting of Hollomon or Voce. The new method uses the Taylor slip analyses to derive a functional form which is optimally fitted to the data. This constitutive relations analysis (CRA) duplicates the data using at least two fit loci. The fit parameters relate to the slip motion within the microstructure and hence its interpretation reveals the possible dynamic shape-change reactions. The fit-process defines a new yield stress which separates the yielding from the deformation mechanisms at large strains that breaks up into two regions separated by intersection parameters. The applications of CRA to nanovoid formation and growth leading to ductile failure, plane stress yield locus prediction using tensile tests and decoding the stress-strain diagram for age-hardened aluminum alloys have been successful. Using super-pure aluminum, this study confirms that CRA is based on crystal plasticity principles and that CRA can predict the correlation of the obstacle strength factor, α, with work-hardening, hence permitting conversion of flow stress at given strains to obstacle density. The derived results show that the inherent annihilation process and the changing strength factor are coordinated to result in a self-consistent constitutive relation.</abstract><cop>Pfaffikon</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.941.2270</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0255-5476 |
ispartof | Materials science forum, 2018-12, Vol.941, p.2270-2277 |
issn | 0255-5476 1662-9752 1662-9752 |
language | eng |
recordid | cdi_proquest_journals_2199308158 |
source | ProQuest Central Essentials; ProQuest Central Student; ProQuest Central (Alumni); Scientific.net Journals |
subjects | Age hardening Aluminum Aluminum base alloys Constitutive relationships Curve fitting Decoding Deformation mechanisms Empirical analysis Loci Microstructure Parameters Plane stress Slip Strain analysis Stress-strain curves Stress-strain relationships Tensile tests Yield strength Yield stress |
title | Forensic Analyses of Stress-Strain Diagrams to Evaluate Contributions from Microstructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A31%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forensic%20Analyses%20of%20Stress-Strain%20Diagrams%20to%20Evaluate%20Contributions%20from%20Microstructure&rft.jtitle=Materials%20science%20forum&rft.au=Saimoto,%20Shigeo&rft.date=2018-12-26&rft.volume=941&rft.spage=2270&rft.epage=2277&rft.pages=2270-2277&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.941.2270&rft_dat=%3Cproquest_cross%3E2199308158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199308158&rft_id=info:pmid/&rfr_iscdi=true |