Structural Stability of Hafnia-Based Materials at Ultra-High Temperature
This study assesses the structural stability at ultra-high temperature of the following selected compositions: 6.5 and 14 mol. % of RE2O3 (RE = Dy, Y, Er, Yb, and Lu) doped HfO2. Under thermal cycling and thermal shock, the structural stability was evaluated at 2400°C with water vapor flux using a s...
Gespeichert in:
Veröffentlicht in: | Materials science forum 2018-12, Vol.941, p.1972-1977 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1977 |
---|---|
container_issue | |
container_start_page | 1972 |
container_title | Materials science forum |
container_volume | 941 |
creator | Bertrand, Pierre Pelletier, Nicolas Julian-Jankowiak, Aurélie Langlade, Cécile Sévin, Louise Justin, Jean François |
description | This study assesses the structural stability at ultra-high temperature of the following selected compositions: 6.5 and 14 mol. % of RE2O3 (RE = Dy, Y, Er, Yb, and Lu) doped HfO2. Under thermal cycling and thermal shock, the structural stability was evaluated at 2400°C with water vapor flux using a specific test bench with a 3 kW CO2 laser. The cubic phase stability, which is theoretically important in the broad temperature range from 25 to 2800°C, was determined by a quantitative analysis of the X-ray diffractograms. Fully and partially stabilized HfO2, obtained respectively with 14 mol. % and 6.5 mol. % of dopants, showed different behaviors to thermal damage. Thermal expansion was measured up to 1650°C to anticipate dimensional changes of these stabilized samples and to be able to design an optimized material solution fitting with future combustion chamber requirements. All of these results were then considered in order to exhibit a trend on the thermal stability at 2400°C of the ionic radius of the dopants and their optimal doping rates. |
doi_str_mv | 10.4028/www.scientific.net/MSF.941.1972 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199304975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199304975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-9aefba652026ae40380ed80b4dbabec7a276d89e94cc136cc4054c3343cc65c43</originalsourceid><addsrcrecordid>eNqNkM9PwjAYhhujiYj-D0s8eNro760ng0ScCcQDcG66rpOSsWHbhfDfW4IJV0_f5f2eN-8DwAuCGYW4mByPx8xra7pgG6uzzoTJcjXPBEUZEjm-ASPEOU5FzvAtGEHMWMpozu_Bg_c7CAkqEB-BchXcoMPgVJusgqpsa8Mp6ZukVE1nVfqmvKmTpQrGWdX6RIVk0wan0tJ-b5O12R-MU_HdPIK7JgbM098dg838fT0r08XXx-dsukg1YSKkQpmmUpxhiLkyFJICmrqAFa0rVRmdK5zzuhBGUK0R4VpTyKgmhBKtOdOUjMHzhXtw_c9gfJC7fnBdrJQYCUEgjYtj6vWS0q733plGHpzdK3eSCMqzPhn1yas-GfXJqE9GffKsLxKmF0Ic2_lg9PZa9F_GL7VOgk0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199304975</pqid></control><display><type>article</type><title>Structural Stability of Hafnia-Based Materials at Ultra-High Temperature</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>Scientific.net Journals</source><creator>Bertrand, Pierre ; Pelletier, Nicolas ; Julian-Jankowiak, Aurélie ; Langlade, Cécile ; Sévin, Louise ; Justin, Jean François</creator><creatorcontrib>Bertrand, Pierre ; Pelletier, Nicolas ; Julian-Jankowiak, Aurélie ; Langlade, Cécile ; Sévin, Louise ; Justin, Jean François</creatorcontrib><description>This study assesses the structural stability at ultra-high temperature of the following selected compositions: 6.5 and 14 mol. % of RE2O3 (RE = Dy, Y, Er, Yb, and Lu) doped HfO2. Under thermal cycling and thermal shock, the structural stability was evaluated at 2400°C with water vapor flux using a specific test bench with a 3 kW CO2 laser. The cubic phase stability, which is theoretically important in the broad temperature range from 25 to 2800°C, was determined by a quantitative analysis of the X-ray diffractograms. Fully and partially stabilized HfO2, obtained respectively with 14 mol. % and 6.5 mol. % of dopants, showed different behaviors to thermal damage. Thermal expansion was measured up to 1650°C to anticipate dimensional changes of these stabilized samples and to be able to design an optimized material solution fitting with future combustion chamber requirements. All of these results were then considered in order to exhibit a trend on the thermal stability at 2400°C of the ionic radius of the dopants and their optimal doping rates.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.941.1972</identifier><language>eng</language><publisher>Pfaffikon: Trans Tech Publications Ltd</publisher><subject>Carbon dioxide ; Carbon dioxide lasers ; Combustion chambers ; Design optimization ; Dimensional changes ; Dopants ; Erbium ; Hafnium oxide ; High temperature ; Partial stabilization ; Phase stability ; Quantitative analysis ; Stability analysis ; Structural stability ; Thermal cycling ; Thermal expansion ; Thermal shock ; Thermal stability ; Water vapor ; Ytterbium ; Yttrium</subject><ispartof>Materials science forum, 2018-12, Vol.941, p.1972-1977</ispartof><rights>2018 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-9aefba652026ae40380ed80b4dbabec7a276d89e94cc136cc4054c3343cc65c43</citedby><cites>FETCH-LOGICAL-c359t-9aefba652026ae40380ed80b4dbabec7a276d89e94cc136cc4054c3343cc65c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4559?width=600</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2199304975?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,21389,23255,27923,27924,33529,33702,34313,43658,43786,44066</link.rule.ids></links><search><creatorcontrib>Bertrand, Pierre</creatorcontrib><creatorcontrib>Pelletier, Nicolas</creatorcontrib><creatorcontrib>Julian-Jankowiak, Aurélie</creatorcontrib><creatorcontrib>Langlade, Cécile</creatorcontrib><creatorcontrib>Sévin, Louise</creatorcontrib><creatorcontrib>Justin, Jean François</creatorcontrib><title>Structural Stability of Hafnia-Based Materials at Ultra-High Temperature</title><title>Materials science forum</title><description>This study assesses the structural stability at ultra-high temperature of the following selected compositions: 6.5 and 14 mol. % of RE2O3 (RE = Dy, Y, Er, Yb, and Lu) doped HfO2. Under thermal cycling and thermal shock, the structural stability was evaluated at 2400°C with water vapor flux using a specific test bench with a 3 kW CO2 laser. The cubic phase stability, which is theoretically important in the broad temperature range from 25 to 2800°C, was determined by a quantitative analysis of the X-ray diffractograms. Fully and partially stabilized HfO2, obtained respectively with 14 mol. % and 6.5 mol. % of dopants, showed different behaviors to thermal damage. Thermal expansion was measured up to 1650°C to anticipate dimensional changes of these stabilized samples and to be able to design an optimized material solution fitting with future combustion chamber requirements. All of these results were then considered in order to exhibit a trend on the thermal stability at 2400°C of the ionic radius of the dopants and their optimal doping rates.</description><subject>Carbon dioxide</subject><subject>Carbon dioxide lasers</subject><subject>Combustion chambers</subject><subject>Design optimization</subject><subject>Dimensional changes</subject><subject>Dopants</subject><subject>Erbium</subject><subject>Hafnium oxide</subject><subject>High temperature</subject><subject>Partial stabilization</subject><subject>Phase stability</subject><subject>Quantitative analysis</subject><subject>Stability analysis</subject><subject>Structural stability</subject><subject>Thermal cycling</subject><subject>Thermal expansion</subject><subject>Thermal shock</subject><subject>Thermal stability</subject><subject>Water vapor</subject><subject>Ytterbium</subject><subject>Yttrium</subject><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkM9PwjAYhhujiYj-D0s8eNro760ng0ScCcQDcG66rpOSsWHbhfDfW4IJV0_f5f2eN-8DwAuCGYW4mByPx8xra7pgG6uzzoTJcjXPBEUZEjm-ASPEOU5FzvAtGEHMWMpozu_Bg_c7CAkqEB-BchXcoMPgVJusgqpsa8Mp6ZukVE1nVfqmvKmTpQrGWdX6RIVk0wan0tJ-b5O12R-MU_HdPIK7JgbM098dg838fT0r08XXx-dsukg1YSKkQpmmUpxhiLkyFJICmrqAFa0rVRmdK5zzuhBGUK0R4VpTyKgmhBKtOdOUjMHzhXtw_c9gfJC7fnBdrJQYCUEgjYtj6vWS0q733plGHpzdK3eSCMqzPhn1yas-GfXJqE9GffKsLxKmF0Ic2_lg9PZa9F_GL7VOgk0</recordid><startdate>20181226</startdate><enddate>20181226</enddate><creator>Bertrand, Pierre</creator><creator>Pelletier, Nicolas</creator><creator>Julian-Jankowiak, Aurélie</creator><creator>Langlade, Cécile</creator><creator>Sévin, Louise</creator><creator>Justin, Jean François</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20181226</creationdate><title>Structural Stability of Hafnia-Based Materials at Ultra-High Temperature</title><author>Bertrand, Pierre ; Pelletier, Nicolas ; Julian-Jankowiak, Aurélie ; Langlade, Cécile ; Sévin, Louise ; Justin, Jean François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-9aefba652026ae40380ed80b4dbabec7a276d89e94cc136cc4054c3343cc65c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon dioxide</topic><topic>Carbon dioxide lasers</topic><topic>Combustion chambers</topic><topic>Design optimization</topic><topic>Dimensional changes</topic><topic>Dopants</topic><topic>Erbium</topic><topic>Hafnium oxide</topic><topic>High temperature</topic><topic>Partial stabilization</topic><topic>Phase stability</topic><topic>Quantitative analysis</topic><topic>Stability analysis</topic><topic>Structural stability</topic><topic>Thermal cycling</topic><topic>Thermal expansion</topic><topic>Thermal shock</topic><topic>Thermal stability</topic><topic>Water vapor</topic><topic>Ytterbium</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bertrand, Pierre</creatorcontrib><creatorcontrib>Pelletier, Nicolas</creatorcontrib><creatorcontrib>Julian-Jankowiak, Aurélie</creatorcontrib><creatorcontrib>Langlade, Cécile</creatorcontrib><creatorcontrib>Sévin, Louise</creatorcontrib><creatorcontrib>Justin, Jean François</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertrand, Pierre</au><au>Pelletier, Nicolas</au><au>Julian-Jankowiak, Aurélie</au><au>Langlade, Cécile</au><au>Sévin, Louise</au><au>Justin, Jean François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Stability of Hafnia-Based Materials at Ultra-High Temperature</atitle><jtitle>Materials science forum</jtitle><date>2018-12-26</date><risdate>2018</risdate><volume>941</volume><spage>1972</spage><epage>1977</epage><pages>1972-1977</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>This study assesses the structural stability at ultra-high temperature of the following selected compositions: 6.5 and 14 mol. % of RE2O3 (RE = Dy, Y, Er, Yb, and Lu) doped HfO2. Under thermal cycling and thermal shock, the structural stability was evaluated at 2400°C with water vapor flux using a specific test bench with a 3 kW CO2 laser. The cubic phase stability, which is theoretically important in the broad temperature range from 25 to 2800°C, was determined by a quantitative analysis of the X-ray diffractograms. Fully and partially stabilized HfO2, obtained respectively with 14 mol. % and 6.5 mol. % of dopants, showed different behaviors to thermal damage. Thermal expansion was measured up to 1650°C to anticipate dimensional changes of these stabilized samples and to be able to design an optimized material solution fitting with future combustion chamber requirements. All of these results were then considered in order to exhibit a trend on the thermal stability at 2400°C of the ionic radius of the dopants and their optimal doping rates.</abstract><cop>Pfaffikon</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.941.1972</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0255-5476 |
ispartof | Materials science forum, 2018-12, Vol.941, p.1972-1977 |
issn | 0255-5476 1662-9752 1662-9752 |
language | eng |
recordid | cdi_proquest_journals_2199304975 |
source | ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; Scientific.net Journals |
subjects | Carbon dioxide Carbon dioxide lasers Combustion chambers Design optimization Dimensional changes Dopants Erbium Hafnium oxide High temperature Partial stabilization Phase stability Quantitative analysis Stability analysis Structural stability Thermal cycling Thermal expansion Thermal shock Thermal stability Water vapor Ytterbium Yttrium |
title | Structural Stability of Hafnia-Based Materials at Ultra-High Temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Stability%20of%20Hafnia-Based%20Materials%20at%20Ultra-High%20Temperature&rft.jtitle=Materials%20science%20forum&rft.au=Bertrand,%20Pierre&rft.date=2018-12-26&rft.volume=941&rft.spage=1972&rft.epage=1977&rft.pages=1972-1977&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.941.1972&rft_dat=%3Cproquest_cross%3E2199304975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199304975&rft_id=info:pmid/&rfr_iscdi=true |