Structural Stability of Hafnia-Based Materials at Ultra-High Temperature

This study assesses the structural stability at ultra-high temperature of the following selected compositions: 6.5 and 14 mol. % of RE2O3 (RE = Dy, Y, Er, Yb, and Lu) doped HfO2. Under thermal cycling and thermal shock, the structural stability was evaluated at 2400°C with water vapor flux using a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2018-12, Vol.941, p.1972-1977
Hauptverfasser: Bertrand, Pierre, Pelletier, Nicolas, Julian-Jankowiak, Aurélie, Langlade, Cécile, Sévin, Louise, Justin, Jean François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1977
container_issue
container_start_page 1972
container_title Materials science forum
container_volume 941
creator Bertrand, Pierre
Pelletier, Nicolas
Julian-Jankowiak, Aurélie
Langlade, Cécile
Sévin, Louise
Justin, Jean François
description This study assesses the structural stability at ultra-high temperature of the following selected compositions: 6.5 and 14 mol. % of RE2O3 (RE = Dy, Y, Er, Yb, and Lu) doped HfO2. Under thermal cycling and thermal shock, the structural stability was evaluated at 2400°C with water vapor flux using a specific test bench with a 3 kW CO2 laser. The cubic phase stability, which is theoretically important in the broad temperature range from 25 to 2800°C, was determined by a quantitative analysis of the X-ray diffractograms. Fully and partially stabilized HfO2, obtained respectively with 14 mol. % and 6.5 mol. % of dopants, showed different behaviors to thermal damage. Thermal expansion was measured up to 1650°C to anticipate dimensional changes of these stabilized samples and to be able to design an optimized material solution fitting with future combustion chamber requirements. All of these results were then considered in order to exhibit a trend on the thermal stability at 2400°C of the ionic radius of the dopants and their optimal doping rates.
doi_str_mv 10.4028/www.scientific.net/MSF.941.1972
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199304975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199304975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-9aefba652026ae40380ed80b4dbabec7a276d89e94cc136cc4054c3343cc65c43</originalsourceid><addsrcrecordid>eNqNkM9PwjAYhhujiYj-D0s8eNro760ng0ScCcQDcG66rpOSsWHbhfDfW4IJV0_f5f2eN-8DwAuCGYW4mByPx8xra7pgG6uzzoTJcjXPBEUZEjm-ASPEOU5FzvAtGEHMWMpozu_Bg_c7CAkqEB-BchXcoMPgVJusgqpsa8Mp6ZukVE1nVfqmvKmTpQrGWdX6RIVk0wan0tJ-b5O12R-MU_HdPIK7JgbM098dg838fT0r08XXx-dsukg1YSKkQpmmUpxhiLkyFJICmrqAFa0rVRmdK5zzuhBGUK0R4VpTyKgmhBKtOdOUjMHzhXtw_c9gfJC7fnBdrJQYCUEgjYtj6vWS0q733plGHpzdK3eSCMqzPhn1yas-GfXJqE9GffKsLxKmF0Ic2_lg9PZa9F_GL7VOgk0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199304975</pqid></control><display><type>article</type><title>Structural Stability of Hafnia-Based Materials at Ultra-High Temperature</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>Scientific.net Journals</source><creator>Bertrand, Pierre ; Pelletier, Nicolas ; Julian-Jankowiak, Aurélie ; Langlade, Cécile ; Sévin, Louise ; Justin, Jean François</creator><creatorcontrib>Bertrand, Pierre ; Pelletier, Nicolas ; Julian-Jankowiak, Aurélie ; Langlade, Cécile ; Sévin, Louise ; Justin, Jean François</creatorcontrib><description>This study assesses the structural stability at ultra-high temperature of the following selected compositions: 6.5 and 14 mol. % of RE2O3 (RE = Dy, Y, Er, Yb, and Lu) doped HfO2. Under thermal cycling and thermal shock, the structural stability was evaluated at 2400°C with water vapor flux using a specific test bench with a 3 kW CO2 laser. The cubic phase stability, which is theoretically important in the broad temperature range from 25 to 2800°C, was determined by a quantitative analysis of the X-ray diffractograms. Fully and partially stabilized HfO2, obtained respectively with 14 mol. % and 6.5 mol. % of dopants, showed different behaviors to thermal damage. Thermal expansion was measured up to 1650°C to anticipate dimensional changes of these stabilized samples and to be able to design an optimized material solution fitting with future combustion chamber requirements. All of these results were then considered in order to exhibit a trend on the thermal stability at 2400°C of the ionic radius of the dopants and their optimal doping rates.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.941.1972</identifier><language>eng</language><publisher>Pfaffikon: Trans Tech Publications Ltd</publisher><subject>Carbon dioxide ; Carbon dioxide lasers ; Combustion chambers ; Design optimization ; Dimensional changes ; Dopants ; Erbium ; Hafnium oxide ; High temperature ; Partial stabilization ; Phase stability ; Quantitative analysis ; Stability analysis ; Structural stability ; Thermal cycling ; Thermal expansion ; Thermal shock ; Thermal stability ; Water vapor ; Ytterbium ; Yttrium</subject><ispartof>Materials science forum, 2018-12, Vol.941, p.1972-1977</ispartof><rights>2018 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-9aefba652026ae40380ed80b4dbabec7a276d89e94cc136cc4054c3343cc65c43</citedby><cites>FETCH-LOGICAL-c359t-9aefba652026ae40380ed80b4dbabec7a276d89e94cc136cc4054c3343cc65c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4559?width=600</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2199304975?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,21389,23255,27923,27924,33529,33702,34313,43658,43786,44066</link.rule.ids></links><search><creatorcontrib>Bertrand, Pierre</creatorcontrib><creatorcontrib>Pelletier, Nicolas</creatorcontrib><creatorcontrib>Julian-Jankowiak, Aurélie</creatorcontrib><creatorcontrib>Langlade, Cécile</creatorcontrib><creatorcontrib>Sévin, Louise</creatorcontrib><creatorcontrib>Justin, Jean François</creatorcontrib><title>Structural Stability of Hafnia-Based Materials at Ultra-High Temperature</title><title>Materials science forum</title><description>This study assesses the structural stability at ultra-high temperature of the following selected compositions: 6.5 and 14 mol. % of RE2O3 (RE = Dy, Y, Er, Yb, and Lu) doped HfO2. Under thermal cycling and thermal shock, the structural stability was evaluated at 2400°C with water vapor flux using a specific test bench with a 3 kW CO2 laser. The cubic phase stability, which is theoretically important in the broad temperature range from 25 to 2800°C, was determined by a quantitative analysis of the X-ray diffractograms. Fully and partially stabilized HfO2, obtained respectively with 14 mol. % and 6.5 mol. % of dopants, showed different behaviors to thermal damage. Thermal expansion was measured up to 1650°C to anticipate dimensional changes of these stabilized samples and to be able to design an optimized material solution fitting with future combustion chamber requirements. All of these results were then considered in order to exhibit a trend on the thermal stability at 2400°C of the ionic radius of the dopants and their optimal doping rates.</description><subject>Carbon dioxide</subject><subject>Carbon dioxide lasers</subject><subject>Combustion chambers</subject><subject>Design optimization</subject><subject>Dimensional changes</subject><subject>Dopants</subject><subject>Erbium</subject><subject>Hafnium oxide</subject><subject>High temperature</subject><subject>Partial stabilization</subject><subject>Phase stability</subject><subject>Quantitative analysis</subject><subject>Stability analysis</subject><subject>Structural stability</subject><subject>Thermal cycling</subject><subject>Thermal expansion</subject><subject>Thermal shock</subject><subject>Thermal stability</subject><subject>Water vapor</subject><subject>Ytterbium</subject><subject>Yttrium</subject><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkM9PwjAYhhujiYj-D0s8eNro760ng0ScCcQDcG66rpOSsWHbhfDfW4IJV0_f5f2eN-8DwAuCGYW4mByPx8xra7pgG6uzzoTJcjXPBEUZEjm-ASPEOU5FzvAtGEHMWMpozu_Bg_c7CAkqEB-BchXcoMPgVJusgqpsa8Mp6ZukVE1nVfqmvKmTpQrGWdX6RIVk0wan0tJ-b5O12R-MU_HdPIK7JgbM098dg838fT0r08XXx-dsukg1YSKkQpmmUpxhiLkyFJICmrqAFa0rVRmdK5zzuhBGUK0R4VpTyKgmhBKtOdOUjMHzhXtw_c9gfJC7fnBdrJQYCUEgjYtj6vWS0q733plGHpzdK3eSCMqzPhn1yas-GfXJqE9GffKsLxKmF0Ic2_lg9PZa9F_GL7VOgk0</recordid><startdate>20181226</startdate><enddate>20181226</enddate><creator>Bertrand, Pierre</creator><creator>Pelletier, Nicolas</creator><creator>Julian-Jankowiak, Aurélie</creator><creator>Langlade, Cécile</creator><creator>Sévin, Louise</creator><creator>Justin, Jean François</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20181226</creationdate><title>Structural Stability of Hafnia-Based Materials at Ultra-High Temperature</title><author>Bertrand, Pierre ; Pelletier, Nicolas ; Julian-Jankowiak, Aurélie ; Langlade, Cécile ; Sévin, Louise ; Justin, Jean François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-9aefba652026ae40380ed80b4dbabec7a276d89e94cc136cc4054c3343cc65c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon dioxide</topic><topic>Carbon dioxide lasers</topic><topic>Combustion chambers</topic><topic>Design optimization</topic><topic>Dimensional changes</topic><topic>Dopants</topic><topic>Erbium</topic><topic>Hafnium oxide</topic><topic>High temperature</topic><topic>Partial stabilization</topic><topic>Phase stability</topic><topic>Quantitative analysis</topic><topic>Stability analysis</topic><topic>Structural stability</topic><topic>Thermal cycling</topic><topic>Thermal expansion</topic><topic>Thermal shock</topic><topic>Thermal stability</topic><topic>Water vapor</topic><topic>Ytterbium</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bertrand, Pierre</creatorcontrib><creatorcontrib>Pelletier, Nicolas</creatorcontrib><creatorcontrib>Julian-Jankowiak, Aurélie</creatorcontrib><creatorcontrib>Langlade, Cécile</creatorcontrib><creatorcontrib>Sévin, Louise</creatorcontrib><creatorcontrib>Justin, Jean François</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertrand, Pierre</au><au>Pelletier, Nicolas</au><au>Julian-Jankowiak, Aurélie</au><au>Langlade, Cécile</au><au>Sévin, Louise</au><au>Justin, Jean François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Stability of Hafnia-Based Materials at Ultra-High Temperature</atitle><jtitle>Materials science forum</jtitle><date>2018-12-26</date><risdate>2018</risdate><volume>941</volume><spage>1972</spage><epage>1977</epage><pages>1972-1977</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>This study assesses the structural stability at ultra-high temperature of the following selected compositions: 6.5 and 14 mol. % of RE2O3 (RE = Dy, Y, Er, Yb, and Lu) doped HfO2. Under thermal cycling and thermal shock, the structural stability was evaluated at 2400°C with water vapor flux using a specific test bench with a 3 kW CO2 laser. The cubic phase stability, which is theoretically important in the broad temperature range from 25 to 2800°C, was determined by a quantitative analysis of the X-ray diffractograms. Fully and partially stabilized HfO2, obtained respectively with 14 mol. % and 6.5 mol. % of dopants, showed different behaviors to thermal damage. Thermal expansion was measured up to 1650°C to anticipate dimensional changes of these stabilized samples and to be able to design an optimized material solution fitting with future combustion chamber requirements. All of these results were then considered in order to exhibit a trend on the thermal stability at 2400°C of the ionic radius of the dopants and their optimal doping rates.</abstract><cop>Pfaffikon</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.941.1972</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0255-5476
ispartof Materials science forum, 2018-12, Vol.941, p.1972-1977
issn 0255-5476
1662-9752
1662-9752
language eng
recordid cdi_proquest_journals_2199304975
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; Scientific.net Journals
subjects Carbon dioxide
Carbon dioxide lasers
Combustion chambers
Design optimization
Dimensional changes
Dopants
Erbium
Hafnium oxide
High temperature
Partial stabilization
Phase stability
Quantitative analysis
Stability analysis
Structural stability
Thermal cycling
Thermal expansion
Thermal shock
Thermal stability
Water vapor
Ytterbium
Yttrium
title Structural Stability of Hafnia-Based Materials at Ultra-High Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Stability%20of%20Hafnia-Based%20Materials%20at%20Ultra-High%20Temperature&rft.jtitle=Materials%20science%20forum&rft.au=Bertrand,%20Pierre&rft.date=2018-12-26&rft.volume=941&rft.spage=1972&rft.epage=1977&rft.pages=1972-1977&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.941.1972&rft_dat=%3Cproquest_cross%3E2199304975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199304975&rft_id=info:pmid/&rfr_iscdi=true