The nonconforming virtual element method

We introduce the nonconforming Virtual Element Method (VEM) for the approximation of second order elliptic problems. We present the construction of the new element in two and three dimensions, highlighting the main differences with the conforming VEM and the classical nonconforming finite element me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Mathematical modelling and numerical analysis 2016-05, Vol.50 (3), p.879-904
Hauptverfasser: Ayuso de Dios, Blanca, Lipnikov, Konstantin, Manzini, Gianmarco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 904
container_issue 3
container_start_page 879
container_title ESAIM. Mathematical modelling and numerical analysis
container_volume 50
creator Ayuso de Dios, Blanca
Lipnikov, Konstantin
Manzini, Gianmarco
description We introduce the nonconforming Virtual Element Method (VEM) for the approximation of second order elliptic problems. We present the construction of the new element in two and three dimensions, highlighting the main differences with the conforming VEM and the classical nonconforming finite element methods. We provide the error analysis and establish the equivalence with a family of mimetic finite difference methods. Numerical experiments verify the theory and validate the performance of the proposed method.
doi_str_mv 10.1051/m2an/2015090
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199299524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199299524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-c09e022b0e2f6664cc11404623ae9750a612eabd300ff76607a16ba138f7100b3</originalsourceid><addsrcrecordid>eNo90EtPAjEUhuHGaCKiO3_AJG5cOHJOr9OlELxi3GB013SGVgaZKbaD0X8vBOLqbJ6cL3kJOUe4RhA4aKhtBxRQgIYD0kOqIWcFx0PSAyV5Lgr2fkxOUloAAAIXPXI5nbusDW0VWh9iU7cf2Xcdu7VdZm7pGtd2WeO6eZidkiNvl8md7W-fvN6Op6P7fPJy9zC6meQVY7rLK9AOKC3BUS-l5FWFyIFLyqzTSoCVSJ0tZwzAeyUlKIuytMgKrxCgZH1ysfu7iuFr7VJnFmEd282koag11VpQvlFXO1XFkFJ03qxi3dj4axDMtoXZtjD7Fhue73idOvfzb238NFIxJUwBb4YOH59RD8E8sT-R_l6B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199299524</pqid></control><display><type>article</type><title>The nonconforming virtual element method</title><source>Alma/SFX Local Collection</source><creator>Ayuso de Dios, Blanca ; Lipnikov, Konstantin ; Manzini, Gianmarco</creator><creatorcontrib>Ayuso de Dios, Blanca ; Lipnikov, Konstantin ; Manzini, Gianmarco</creatorcontrib><description>We introduce the nonconforming Virtual Element Method (VEM) for the approximation of second order elliptic problems. We present the construction of the new element in two and three dimensions, highlighting the main differences with the conforming VEM and the classical nonconforming finite element methods. We provide the error analysis and establish the equivalence with a family of mimetic finite difference methods. Numerical experiments verify the theory and validate the performance of the proposed method.</description><identifier>ISSN: 0764-583X</identifier><identifier>EISSN: 1290-3841</identifier><identifier>DOI: 10.1051/m2an/2015090</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>65G99 ; 65N12 ; 65N30 ; 76R99 ; elliptic problems ; Error analysis ; Finite difference method ; Finite element method ; Mathematical analysis ; nonconforming method ; Nonlinear programming ; Numerical methods ; Poisson equation ; unstructured meshes ; Virtual element method</subject><ispartof>ESAIM. Mathematical modelling and numerical analysis, 2016-05, Vol.50 (3), p.879-904</ispartof><rights>2016. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-m2an.org/articles/m2an/abs/2016/03/m2an150085/m2an150085.html .</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-c09e022b0e2f6664cc11404623ae9750a612eabd300ff76607a16ba138f7100b3</citedby><cites>FETCH-LOGICAL-c339t-c09e022b0e2f6664cc11404623ae9750a612eabd300ff76607a16ba138f7100b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Ayuso de Dios, Blanca</creatorcontrib><creatorcontrib>Lipnikov, Konstantin</creatorcontrib><creatorcontrib>Manzini, Gianmarco</creatorcontrib><title>The nonconforming virtual element method</title><title>ESAIM. Mathematical modelling and numerical analysis</title><description>We introduce the nonconforming Virtual Element Method (VEM) for the approximation of second order elliptic problems. We present the construction of the new element in two and three dimensions, highlighting the main differences with the conforming VEM and the classical nonconforming finite element methods. We provide the error analysis and establish the equivalence with a family of mimetic finite difference methods. Numerical experiments verify the theory and validate the performance of the proposed method.</description><subject>65G99</subject><subject>65N12</subject><subject>65N30</subject><subject>76R99</subject><subject>elliptic problems</subject><subject>Error analysis</subject><subject>Finite difference method</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>nonconforming method</subject><subject>Nonlinear programming</subject><subject>Numerical methods</subject><subject>Poisson equation</subject><subject>unstructured meshes</subject><subject>Virtual element method</subject><issn>0764-583X</issn><issn>1290-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo90EtPAjEUhuHGaCKiO3_AJG5cOHJOr9OlELxi3GB013SGVgaZKbaD0X8vBOLqbJ6cL3kJOUe4RhA4aKhtBxRQgIYD0kOqIWcFx0PSAyV5Lgr2fkxOUloAAAIXPXI5nbusDW0VWh9iU7cf2Xcdu7VdZm7pGtd2WeO6eZidkiNvl8md7W-fvN6Op6P7fPJy9zC6meQVY7rLK9AOKC3BUS-l5FWFyIFLyqzTSoCVSJ0tZwzAeyUlKIuytMgKrxCgZH1ysfu7iuFr7VJnFmEd282koag11VpQvlFXO1XFkFJ03qxi3dj4axDMtoXZtjD7Fhue73idOvfzb238NFIxJUwBb4YOH59RD8E8sT-R_l6B</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Ayuso de Dios, Blanca</creator><creator>Lipnikov, Konstantin</creator><creator>Manzini, Gianmarco</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201605</creationdate><title>The nonconforming virtual element method</title><author>Ayuso de Dios, Blanca ; Lipnikov, Konstantin ; Manzini, Gianmarco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-c09e022b0e2f6664cc11404623ae9750a612eabd300ff76607a16ba138f7100b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>65G99</topic><topic>65N12</topic><topic>65N30</topic><topic>76R99</topic><topic>elliptic problems</topic><topic>Error analysis</topic><topic>Finite difference method</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>nonconforming method</topic><topic>Nonlinear programming</topic><topic>Numerical methods</topic><topic>Poisson equation</topic><topic>unstructured meshes</topic><topic>Virtual element method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayuso de Dios, Blanca</creatorcontrib><creatorcontrib>Lipnikov, Konstantin</creatorcontrib><creatorcontrib>Manzini, Gianmarco</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayuso de Dios, Blanca</au><au>Lipnikov, Konstantin</au><au>Manzini, Gianmarco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The nonconforming virtual element method</atitle><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle><date>2016-05</date><risdate>2016</risdate><volume>50</volume><issue>3</issue><spage>879</spage><epage>904</epage><pages>879-904</pages><issn>0764-583X</issn><eissn>1290-3841</eissn><abstract>We introduce the nonconforming Virtual Element Method (VEM) for the approximation of second order elliptic problems. We present the construction of the new element in two and three dimensions, highlighting the main differences with the conforming VEM and the classical nonconforming finite element methods. We provide the error analysis and establish the equivalence with a family of mimetic finite difference methods. Numerical experiments verify the theory and validate the performance of the proposed method.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/m2an/2015090</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0764-583X
ispartof ESAIM. Mathematical modelling and numerical analysis, 2016-05, Vol.50 (3), p.879-904
issn 0764-583X
1290-3841
language eng
recordid cdi_proquest_journals_2199299524
source Alma/SFX Local Collection
subjects 65G99
65N12
65N30
76R99
elliptic problems
Error analysis
Finite difference method
Finite element method
Mathematical analysis
nonconforming method
Nonlinear programming
Numerical methods
Poisson equation
unstructured meshes
Virtual element method
title The nonconforming virtual element method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20nonconforming%20virtual%20element%20method&rft.jtitle=ESAIM.%20Mathematical%20modelling%20and%20numerical%20analysis&rft.au=Ayuso%20de%20Dios,%20Blanca&rft.date=2016-05&rft.volume=50&rft.issue=3&rft.spage=879&rft.epage=904&rft.pages=879-904&rft.issn=0764-583X&rft.eissn=1290-3841&rft_id=info:doi/10.1051/m2an/2015090&rft_dat=%3Cproquest_cross%3E2199299524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199299524&rft_id=info:pmid/&rfr_iscdi=true