Robust tensor beamforming for polarization sensitive arrays
Robustness is of great importance in array beamforming. With the purpose of improving the robustness of the array beamforming, methods using tensor operations are explored in this paper. Specifically, a higher-dimension tensor decomposition method to construct minimum variance distortionless respons...
Gespeichert in:
Veröffentlicht in: | Multidimensional systems and signal processing 2019-04, Vol.30 (2), p.727-748 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 748 |
---|---|
container_issue | 2 |
container_start_page | 727 |
container_title | Multidimensional systems and signal processing |
container_volume | 30 |
creator | Liu, Long Xie, Jian Wang, Ling Zhang, Zhaolin Zhu, Yongjia |
description | Robustness is of great importance in array beamforming. With the purpose of improving the robustness of the array beamforming, methods using tensor operations are explored in this paper. Specifically, a higher-dimension tensor decomposition method to construct minimum variance distortionless response model (TD-MVDR) is proposed under the assumption that the polarization sensitive array enjoys the multilinear translation invariant property. Whereafter, the proposed TD-MVDR algorithm is incorporated into the improved conjugate gradient least squares method called TD-ICGLS to obtain a better robustness. Considering that the degradation caused by the presence of the random steering vector mismatches, we derive a diagonal loading model for TD-ICGLS to improve the robustness of it. Moreover, a method for determining the loading level is put forward as the key step for the proposed robust tensor beamformer. Results demonstrate that the proposed diagonal loading TD-ICGLS beamformer yields more robust performance than existing matrix-based solutions, such as global beamforming, while operating in a challenging scenario where the signal-of-interest power approaches the jamming power. Meanwhile, an improvement of the computational complexity in terms of TD-ICGLS is noteworthy. |
doi_str_mv | 10.1007/s11045-018-0580-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199269870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199269870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-43f1fce601f91807ac83e666031b3e79564f73862bf21736316c3fbf6e0f6d683</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcF19H3kvYlxZUMfsGAILoOaU2GDtNmTDrC-OvNUMGVq8uDc-6Dy9glwjUCqJuECGXFATWHSgOnIzbDSkkOWpTHbAa1kJzyccrOUloDZAtpxm5fQ7NLYzG6IYVYNM72PsS-G1ZFzmIbNjZ233bswlCkzHRj9-UKG6Pdp3N24u0muYvfnLP3h_u3xRNfvjw-L-6WvJWVHHkpPfrWEaCvUYOyrZaOiEBiI52qKyq9kppE4wUqSRKplb7x5MDTB2k5Z1dT7zaGz51Lo1mHXRzySyOwrgXVWkGmcKLaGFKKzptt7Hob9wbBHDYy00Ymb2QOGxnKjpiclNlh5eJf8__SD6McaLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199269870</pqid></control><display><type>article</type><title>Robust tensor beamforming for polarization sensitive arrays</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Long ; Xie, Jian ; Wang, Ling ; Zhang, Zhaolin ; Zhu, Yongjia</creator><creatorcontrib>Liu, Long ; Xie, Jian ; Wang, Ling ; Zhang, Zhaolin ; Zhu, Yongjia</creatorcontrib><description>Robustness is of great importance in array beamforming. With the purpose of improving the robustness of the array beamforming, methods using tensor operations are explored in this paper. Specifically, a higher-dimension tensor decomposition method to construct minimum variance distortionless response model (TD-MVDR) is proposed under the assumption that the polarization sensitive array enjoys the multilinear translation invariant property. Whereafter, the proposed TD-MVDR algorithm is incorporated into the improved conjugate gradient least squares method called TD-ICGLS to obtain a better robustness. Considering that the degradation caused by the presence of the random steering vector mismatches, we derive a diagonal loading model for TD-ICGLS to improve the robustness of it. Moreover, a method for determining the loading level is put forward as the key step for the proposed robust tensor beamformer. Results demonstrate that the proposed diagonal loading TD-ICGLS beamformer yields more robust performance than existing matrix-based solutions, such as global beamforming, while operating in a challenging scenario where the signal-of-interest power approaches the jamming power. Meanwhile, an improvement of the computational complexity in terms of TD-ICGLS is noteworthy.</description><identifier>ISSN: 0923-6082</identifier><identifier>EISSN: 1573-0824</identifier><identifier>DOI: 10.1007/s11045-018-0580-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Arrays ; Artificial Intelligence ; Beamforming ; Circuits and Systems ; Electrical Engineering ; Engineering ; Jamming ; Least squares method ; Polarization ; Robustness ; Signal,Image and Speech Processing ; Steering ; Tensors</subject><ispartof>Multidimensional systems and signal processing, 2019-04, Vol.30 (2), p.727-748</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-43f1fce601f91807ac83e666031b3e79564f73862bf21736316c3fbf6e0f6d683</citedby><cites>FETCH-LOGICAL-c353t-43f1fce601f91807ac83e666031b3e79564f73862bf21736316c3fbf6e0f6d683</cites><orcidid>0000-0002-0338-0323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11045-018-0580-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11045-018-0580-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Liu, Long</creatorcontrib><creatorcontrib>Xie, Jian</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Zhang, Zhaolin</creatorcontrib><creatorcontrib>Zhu, Yongjia</creatorcontrib><title>Robust tensor beamforming for polarization sensitive arrays</title><title>Multidimensional systems and signal processing</title><addtitle>Multidim Syst Sign Process</addtitle><description>Robustness is of great importance in array beamforming. With the purpose of improving the robustness of the array beamforming, methods using tensor operations are explored in this paper. Specifically, a higher-dimension tensor decomposition method to construct minimum variance distortionless response model (TD-MVDR) is proposed under the assumption that the polarization sensitive array enjoys the multilinear translation invariant property. Whereafter, the proposed TD-MVDR algorithm is incorporated into the improved conjugate gradient least squares method called TD-ICGLS to obtain a better robustness. Considering that the degradation caused by the presence of the random steering vector mismatches, we derive a diagonal loading model for TD-ICGLS to improve the robustness of it. Moreover, a method for determining the loading level is put forward as the key step for the proposed robust tensor beamformer. Results demonstrate that the proposed diagonal loading TD-ICGLS beamformer yields more robust performance than existing matrix-based solutions, such as global beamforming, while operating in a challenging scenario where the signal-of-interest power approaches the jamming power. Meanwhile, an improvement of the computational complexity in terms of TD-ICGLS is noteworthy.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>Artificial Intelligence</subject><subject>Beamforming</subject><subject>Circuits and Systems</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Jamming</subject><subject>Least squares method</subject><subject>Polarization</subject><subject>Robustness</subject><subject>Signal,Image and Speech Processing</subject><subject>Steering</subject><subject>Tensors</subject><issn>0923-6082</issn><issn>1573-0824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI7-AHcF19H3kvYlxZUMfsGAILoOaU2GDtNmTDrC-OvNUMGVq8uDc-6Dy9glwjUCqJuECGXFATWHSgOnIzbDSkkOWpTHbAa1kJzyccrOUloDZAtpxm5fQ7NLYzG6IYVYNM72PsS-G1ZFzmIbNjZ233bswlCkzHRj9-UKG6Pdp3N24u0muYvfnLP3h_u3xRNfvjw-L-6WvJWVHHkpPfrWEaCvUYOyrZaOiEBiI52qKyq9kppE4wUqSRKplb7x5MDTB2k5Z1dT7zaGz51Lo1mHXRzySyOwrgXVWkGmcKLaGFKKzptt7Hob9wbBHDYy00Ymb2QOGxnKjpiclNlh5eJf8__SD6McaLI</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Liu, Long</creator><creator>Xie, Jian</creator><creator>Wang, Ling</creator><creator>Zhang, Zhaolin</creator><creator>Zhu, Yongjia</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0338-0323</orcidid></search><sort><creationdate>20190401</creationdate><title>Robust tensor beamforming for polarization sensitive arrays</title><author>Liu, Long ; Xie, Jian ; Wang, Ling ; Zhang, Zhaolin ; Zhu, Yongjia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-43f1fce601f91807ac83e666031b3e79564f73862bf21736316c3fbf6e0f6d683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>Artificial Intelligence</topic><topic>Beamforming</topic><topic>Circuits and Systems</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Jamming</topic><topic>Least squares method</topic><topic>Polarization</topic><topic>Robustness</topic><topic>Signal,Image and Speech Processing</topic><topic>Steering</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Long</creatorcontrib><creatorcontrib>Xie, Jian</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Zhang, Zhaolin</creatorcontrib><creatorcontrib>Zhu, Yongjia</creatorcontrib><collection>CrossRef</collection><jtitle>Multidimensional systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Long</au><au>Xie, Jian</au><au>Wang, Ling</au><au>Zhang, Zhaolin</au><au>Zhu, Yongjia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust tensor beamforming for polarization sensitive arrays</atitle><jtitle>Multidimensional systems and signal processing</jtitle><stitle>Multidim Syst Sign Process</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>30</volume><issue>2</issue><spage>727</spage><epage>748</epage><pages>727-748</pages><issn>0923-6082</issn><eissn>1573-0824</eissn><abstract>Robustness is of great importance in array beamforming. With the purpose of improving the robustness of the array beamforming, methods using tensor operations are explored in this paper. Specifically, a higher-dimension tensor decomposition method to construct minimum variance distortionless response model (TD-MVDR) is proposed under the assumption that the polarization sensitive array enjoys the multilinear translation invariant property. Whereafter, the proposed TD-MVDR algorithm is incorporated into the improved conjugate gradient least squares method called TD-ICGLS to obtain a better robustness. Considering that the degradation caused by the presence of the random steering vector mismatches, we derive a diagonal loading model for TD-ICGLS to improve the robustness of it. Moreover, a method for determining the loading level is put forward as the key step for the proposed robust tensor beamformer. Results demonstrate that the proposed diagonal loading TD-ICGLS beamformer yields more robust performance than existing matrix-based solutions, such as global beamforming, while operating in a challenging scenario where the signal-of-interest power approaches the jamming power. Meanwhile, an improvement of the computational complexity in terms of TD-ICGLS is noteworthy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11045-018-0580-6</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-0338-0323</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0923-6082 |
ispartof | Multidimensional systems and signal processing, 2019-04, Vol.30 (2), p.727-748 |
issn | 0923-6082 1573-0824 |
language | eng |
recordid | cdi_proquest_journals_2199269870 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Arrays Artificial Intelligence Beamforming Circuits and Systems Electrical Engineering Engineering Jamming Least squares method Polarization Robustness Signal,Image and Speech Processing Steering Tensors |
title | Robust tensor beamforming for polarization sensitive arrays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20tensor%20beamforming%20for%20polarization%20sensitive%20arrays&rft.jtitle=Multidimensional%20systems%20and%20signal%20processing&rft.au=Liu,%20Long&rft.date=2019-04-01&rft.volume=30&rft.issue=2&rft.spage=727&rft.epage=748&rft.pages=727-748&rft.issn=0923-6082&rft.eissn=1573-0824&rft_id=info:doi/10.1007/s11045-018-0580-6&rft_dat=%3Cproquest_cross%3E2199269870%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199269870&rft_id=info:pmid/&rfr_iscdi=true |