Robust tensor beamforming for polarization sensitive arrays

Robustness is of great importance in array beamforming. With the purpose of improving the robustness of the array beamforming, methods using tensor operations are explored in this paper. Specifically, a higher-dimension tensor decomposition method to construct minimum variance distortionless respons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multidimensional systems and signal processing 2019-04, Vol.30 (2), p.727-748
Hauptverfasser: Liu, Long, Xie, Jian, Wang, Ling, Zhang, Zhaolin, Zhu, Yongjia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 748
container_issue 2
container_start_page 727
container_title Multidimensional systems and signal processing
container_volume 30
creator Liu, Long
Xie, Jian
Wang, Ling
Zhang, Zhaolin
Zhu, Yongjia
description Robustness is of great importance in array beamforming. With the purpose of improving the robustness of the array beamforming, methods using tensor operations are explored in this paper. Specifically, a higher-dimension tensor decomposition method to construct minimum variance distortionless response model (TD-MVDR) is proposed under the assumption that the polarization sensitive array enjoys the multilinear translation invariant property. Whereafter, the proposed TD-MVDR algorithm is incorporated into the improved conjugate gradient least squares method called TD-ICGLS to obtain a better robustness. Considering that the degradation caused by the presence of the random steering vector mismatches, we derive a diagonal loading model for TD-ICGLS to improve the robustness of it. Moreover, a method for determining the loading level is put forward as the key step for the proposed robust tensor beamformer. Results demonstrate that the proposed diagonal loading TD-ICGLS beamformer yields more robust performance than existing matrix-based solutions, such as global beamforming, while operating in a challenging scenario where the signal-of-interest power approaches the jamming power. Meanwhile, an improvement of the computational complexity in terms of TD-ICGLS is noteworthy.
doi_str_mv 10.1007/s11045-018-0580-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199269870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199269870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-43f1fce601f91807ac83e666031b3e79564f73862bf21736316c3fbf6e0f6d683</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcF19H3kvYlxZUMfsGAILoOaU2GDtNmTDrC-OvNUMGVq8uDc-6Dy9glwjUCqJuECGXFATWHSgOnIzbDSkkOWpTHbAa1kJzyccrOUloDZAtpxm5fQ7NLYzG6IYVYNM72PsS-G1ZFzmIbNjZ233bswlCkzHRj9-UKG6Pdp3N24u0muYvfnLP3h_u3xRNfvjw-L-6WvJWVHHkpPfrWEaCvUYOyrZaOiEBiI52qKyq9kppE4wUqSRKplb7x5MDTB2k5Z1dT7zaGz51Lo1mHXRzySyOwrgXVWkGmcKLaGFKKzptt7Hob9wbBHDYy00Ymb2QOGxnKjpiclNlh5eJf8__SD6McaLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199269870</pqid></control><display><type>article</type><title>Robust tensor beamforming for polarization sensitive arrays</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Long ; Xie, Jian ; Wang, Ling ; Zhang, Zhaolin ; Zhu, Yongjia</creator><creatorcontrib>Liu, Long ; Xie, Jian ; Wang, Ling ; Zhang, Zhaolin ; Zhu, Yongjia</creatorcontrib><description>Robustness is of great importance in array beamforming. With the purpose of improving the robustness of the array beamforming, methods using tensor operations are explored in this paper. Specifically, a higher-dimension tensor decomposition method to construct minimum variance distortionless response model (TD-MVDR) is proposed under the assumption that the polarization sensitive array enjoys the multilinear translation invariant property. Whereafter, the proposed TD-MVDR algorithm is incorporated into the improved conjugate gradient least squares method called TD-ICGLS to obtain a better robustness. Considering that the degradation caused by the presence of the random steering vector mismatches, we derive a diagonal loading model for TD-ICGLS to improve the robustness of it. Moreover, a method for determining the loading level is put forward as the key step for the proposed robust tensor beamformer. Results demonstrate that the proposed diagonal loading TD-ICGLS beamformer yields more robust performance than existing matrix-based solutions, such as global beamforming, while operating in a challenging scenario where the signal-of-interest power approaches the jamming power. Meanwhile, an improvement of the computational complexity in terms of TD-ICGLS is noteworthy.</description><identifier>ISSN: 0923-6082</identifier><identifier>EISSN: 1573-0824</identifier><identifier>DOI: 10.1007/s11045-018-0580-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Arrays ; Artificial Intelligence ; Beamforming ; Circuits and Systems ; Electrical Engineering ; Engineering ; Jamming ; Least squares method ; Polarization ; Robustness ; Signal,Image and Speech Processing ; Steering ; Tensors</subject><ispartof>Multidimensional systems and signal processing, 2019-04, Vol.30 (2), p.727-748</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-43f1fce601f91807ac83e666031b3e79564f73862bf21736316c3fbf6e0f6d683</citedby><cites>FETCH-LOGICAL-c353t-43f1fce601f91807ac83e666031b3e79564f73862bf21736316c3fbf6e0f6d683</cites><orcidid>0000-0002-0338-0323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11045-018-0580-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11045-018-0580-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Liu, Long</creatorcontrib><creatorcontrib>Xie, Jian</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Zhang, Zhaolin</creatorcontrib><creatorcontrib>Zhu, Yongjia</creatorcontrib><title>Robust tensor beamforming for polarization sensitive arrays</title><title>Multidimensional systems and signal processing</title><addtitle>Multidim Syst Sign Process</addtitle><description>Robustness is of great importance in array beamforming. With the purpose of improving the robustness of the array beamforming, methods using tensor operations are explored in this paper. Specifically, a higher-dimension tensor decomposition method to construct minimum variance distortionless response model (TD-MVDR) is proposed under the assumption that the polarization sensitive array enjoys the multilinear translation invariant property. Whereafter, the proposed TD-MVDR algorithm is incorporated into the improved conjugate gradient least squares method called TD-ICGLS to obtain a better robustness. Considering that the degradation caused by the presence of the random steering vector mismatches, we derive a diagonal loading model for TD-ICGLS to improve the robustness of it. Moreover, a method for determining the loading level is put forward as the key step for the proposed robust tensor beamformer. Results demonstrate that the proposed diagonal loading TD-ICGLS beamformer yields more robust performance than existing matrix-based solutions, such as global beamforming, while operating in a challenging scenario where the signal-of-interest power approaches the jamming power. Meanwhile, an improvement of the computational complexity in terms of TD-ICGLS is noteworthy.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>Artificial Intelligence</subject><subject>Beamforming</subject><subject>Circuits and Systems</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Jamming</subject><subject>Least squares method</subject><subject>Polarization</subject><subject>Robustness</subject><subject>Signal,Image and Speech Processing</subject><subject>Steering</subject><subject>Tensors</subject><issn>0923-6082</issn><issn>1573-0824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI7-AHcF19H3kvYlxZUMfsGAILoOaU2GDtNmTDrC-OvNUMGVq8uDc-6Dy9glwjUCqJuECGXFATWHSgOnIzbDSkkOWpTHbAa1kJzyccrOUloDZAtpxm5fQ7NLYzG6IYVYNM72PsS-G1ZFzmIbNjZ233bswlCkzHRj9-UKG6Pdp3N24u0muYvfnLP3h_u3xRNfvjw-L-6WvJWVHHkpPfrWEaCvUYOyrZaOiEBiI52qKyq9kppE4wUqSRKplb7x5MDTB2k5Z1dT7zaGz51Lo1mHXRzySyOwrgXVWkGmcKLaGFKKzptt7Hob9wbBHDYy00Ymb2QOGxnKjpiclNlh5eJf8__SD6McaLI</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Liu, Long</creator><creator>Xie, Jian</creator><creator>Wang, Ling</creator><creator>Zhang, Zhaolin</creator><creator>Zhu, Yongjia</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0338-0323</orcidid></search><sort><creationdate>20190401</creationdate><title>Robust tensor beamforming for polarization sensitive arrays</title><author>Liu, Long ; Xie, Jian ; Wang, Ling ; Zhang, Zhaolin ; Zhu, Yongjia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-43f1fce601f91807ac83e666031b3e79564f73862bf21736316c3fbf6e0f6d683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>Artificial Intelligence</topic><topic>Beamforming</topic><topic>Circuits and Systems</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Jamming</topic><topic>Least squares method</topic><topic>Polarization</topic><topic>Robustness</topic><topic>Signal,Image and Speech Processing</topic><topic>Steering</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Long</creatorcontrib><creatorcontrib>Xie, Jian</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>Zhang, Zhaolin</creatorcontrib><creatorcontrib>Zhu, Yongjia</creatorcontrib><collection>CrossRef</collection><jtitle>Multidimensional systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Long</au><au>Xie, Jian</au><au>Wang, Ling</au><au>Zhang, Zhaolin</au><au>Zhu, Yongjia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust tensor beamforming for polarization sensitive arrays</atitle><jtitle>Multidimensional systems and signal processing</jtitle><stitle>Multidim Syst Sign Process</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>30</volume><issue>2</issue><spage>727</spage><epage>748</epage><pages>727-748</pages><issn>0923-6082</issn><eissn>1573-0824</eissn><abstract>Robustness is of great importance in array beamforming. With the purpose of improving the robustness of the array beamforming, methods using tensor operations are explored in this paper. Specifically, a higher-dimension tensor decomposition method to construct minimum variance distortionless response model (TD-MVDR) is proposed under the assumption that the polarization sensitive array enjoys the multilinear translation invariant property. Whereafter, the proposed TD-MVDR algorithm is incorporated into the improved conjugate gradient least squares method called TD-ICGLS to obtain a better robustness. Considering that the degradation caused by the presence of the random steering vector mismatches, we derive a diagonal loading model for TD-ICGLS to improve the robustness of it. Moreover, a method for determining the loading level is put forward as the key step for the proposed robust tensor beamformer. Results demonstrate that the proposed diagonal loading TD-ICGLS beamformer yields more robust performance than existing matrix-based solutions, such as global beamforming, while operating in a challenging scenario where the signal-of-interest power approaches the jamming power. Meanwhile, an improvement of the computational complexity in terms of TD-ICGLS is noteworthy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11045-018-0580-6</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-0338-0323</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0923-6082
ispartof Multidimensional systems and signal processing, 2019-04, Vol.30 (2), p.727-748
issn 0923-6082
1573-0824
language eng
recordid cdi_proquest_journals_2199269870
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Arrays
Artificial Intelligence
Beamforming
Circuits and Systems
Electrical Engineering
Engineering
Jamming
Least squares method
Polarization
Robustness
Signal,Image and Speech Processing
Steering
Tensors
title Robust tensor beamforming for polarization sensitive arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20tensor%20beamforming%20for%20polarization%20sensitive%20arrays&rft.jtitle=Multidimensional%20systems%20and%20signal%20processing&rft.au=Liu,%20Long&rft.date=2019-04-01&rft.volume=30&rft.issue=2&rft.spage=727&rft.epage=748&rft.pages=727-748&rft.issn=0923-6082&rft.eissn=1573-0824&rft_id=info:doi/10.1007/s11045-018-0580-6&rft_dat=%3Cproquest_cross%3E2199269870%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199269870&rft_id=info:pmid/&rfr_iscdi=true