Porous core-shell TixSn1-xO2 solid solutions with broad-light response: One-pot synthesis and ultrahigh photooxidation performance

[Display omitted] •Porous core-shell TixSn1-xO2 solid solutions are self-developed via Ostwald ripening process.•The solid solutions possess effective light harvesting capacity and charge separation.•The prepared Ti0.7Sn0.3O2 sample shows ultrahigh photo-activity in MO and As(III) removal.•The holes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2019-05, Vol.244, p.45-55
Hauptverfasser: Tian, Qinfen, Wei, Wenkang, Dai, Juguo, Sun, Qianqian, Zhuang, Jiandong, Zheng, Yi, Liu, Ping, Fan, Mizi, Chen, Lihui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue
container_start_page 45
container_title Applied catalysis. B, Environmental
container_volume 244
creator Tian, Qinfen
Wei, Wenkang
Dai, Juguo
Sun, Qianqian
Zhuang, Jiandong
Zheng, Yi
Liu, Ping
Fan, Mizi
Chen, Lihui
description [Display omitted] •Porous core-shell TixSn1-xO2 solid solutions are self-developed via Ostwald ripening process.•The solid solutions possess effective light harvesting capacity and charge separation.•The prepared Ti0.7Sn0.3O2 sample shows ultrahigh photo-activity in MO and As(III) removal.•The holes are detected as the main active species for the photooxidation of MO and As(III). Low light-absorption capacity and separation efficiency of photo-generated charges are two major limit factors to achieve high performance of photocatalysts. Herein, porous core-shell TixSn1-xO2 solid solutions with effective light-absorption capacity and charge separation are fabricated through one-pot mild solvothermal method without any surfactant and template. The self-development mechanism of the porous core-shell microspheres includes prior Ti-alkoxide hydrolysis and the spontaneous nucleation of TixSn1-xO2 combined with Ostwald ripening. Interestingly, although both TiO2 and SnO2 are wide band gap semiconductors, the prepared yellow TixSn1-xO2 solid solutions are of controllable band structure and broad-light response capacity. When Ti:Sn molar ratio is 7:3, the Ti0.7Sn0.3O2 sample shows the highest MO-photodegradation rate constant of 0.62 min−1 under UV irradiation, exceeding that of commercial TiO2 (0.04 min−1) by more than 15 times. Particularly, the sample also exhibits ultrahigh photocatalytic activity in MO-photodegradation (0.038 min−1) and As(III) removal (up to 100%) under visible-light (≥420 nm) irradiation. The mechanism study reveals that due to the proper redox potential of SnIV/SnII and the structural defects (e.g., oxygen vacancies) caused by lattice distortion, the photogenerated electrons would be trapped and the holes act as the main active species for the photooxidation reaction of MO and As(III) over TixSn1-xO2 photocatalysts.
doi_str_mv 10.1016/j.apcatb.2018.11.045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199233792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337318310956</els_id><sourcerecordid>2199233792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-ca370925cf659feb57c1f18d6578d5ab556d10b4b6e0fb4c7bed36214d6c119e3</originalsourceid><addsrcrecordid>eNp9kE9rGzEQxUVoIK6Tb5CDoGdtNav920OhmKYpBFyIcxZaabYrs15tJW1jX_PJI-Oee5k5zHtveD9C7oFnwKH6vM_UrFXsspxDkwFkvCivyAqaWjDRNOIDWfE2r5gQtbghH0PYc85zkTcr8vbLebcEqp1HFgYcR7qzx-cJ2HGb0-BGa85zidZNgb7aONDOO2XYaH8PkXoMczrgF7qdkM0u0nCa4oDBBqomQ5cxejUkKZ0HF507WqPOUXRG3zt_UJPGW3LdqzHg3b-9Ji8P33ebR_a0_fFz8-2JaVFDZFqJOrUodV-VbY9dWWvooTFVWTemVF1ZVgZ4V3QV8r4rdN2hEVUOhak0QItiTT5dcmfv_iwYoty7xU_ppcyhbfNEJ401KS4q7V0IHns5e3tQ_iSByzNtuZcX2vJMWwLIRDvZvl5smBr8tehl0BZTO2M96iiNs_8PeAeQzY1F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199233792</pqid></control><display><type>article</type><title>Porous core-shell TixSn1-xO2 solid solutions with broad-light response: One-pot synthesis and ultrahigh photooxidation performance</title><source>Elsevier ScienceDirect Journals</source><creator>Tian, Qinfen ; Wei, Wenkang ; Dai, Juguo ; Sun, Qianqian ; Zhuang, Jiandong ; Zheng, Yi ; Liu, Ping ; Fan, Mizi ; Chen, Lihui</creator><creatorcontrib>Tian, Qinfen ; Wei, Wenkang ; Dai, Juguo ; Sun, Qianqian ; Zhuang, Jiandong ; Zheng, Yi ; Liu, Ping ; Fan, Mizi ; Chen, Lihui</creatorcontrib><description>[Display omitted] •Porous core-shell TixSn1-xO2 solid solutions are self-developed via Ostwald ripening process.•The solid solutions possess effective light harvesting capacity and charge separation.•The prepared Ti0.7Sn0.3O2 sample shows ultrahigh photo-activity in MO and As(III) removal.•The holes are detected as the main active species for the photooxidation of MO and As(III). Low light-absorption capacity and separation efficiency of photo-generated charges are two major limit factors to achieve high performance of photocatalysts. Herein, porous core-shell TixSn1-xO2 solid solutions with effective light-absorption capacity and charge separation are fabricated through one-pot mild solvothermal method without any surfactant and template. The self-development mechanism of the porous core-shell microspheres includes prior Ti-alkoxide hydrolysis and the spontaneous nucleation of TixSn1-xO2 combined with Ostwald ripening. Interestingly, although both TiO2 and SnO2 are wide band gap semiconductors, the prepared yellow TixSn1-xO2 solid solutions are of controllable band structure and broad-light response capacity. When Ti:Sn molar ratio is 7:3, the Ti0.7Sn0.3O2 sample shows the highest MO-photodegradation rate constant of 0.62 min−1 under UV irradiation, exceeding that of commercial TiO2 (0.04 min−1) by more than 15 times. Particularly, the sample also exhibits ultrahigh photocatalytic activity in MO-photodegradation (0.038 min−1) and As(III) removal (up to 100%) under visible-light (≥420 nm) irradiation. The mechanism study reveals that due to the proper redox potential of SnIV/SnII and the structural defects (e.g., oxygen vacancies) caused by lattice distortion, the photogenerated electrons would be trapped and the holes act as the main active species for the photooxidation reaction of MO and As(III) over TixSn1-xO2 photocatalysts.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2018.11.045</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Absorption ; Broad-light responsive ; Catalytic activity ; Electronics industry ; Irradiation ; Lattice vacancies ; Light effects ; Microspheres ; Nucleation ; Ostwald ripening ; Photocatalysis ; Photocatalysts ; Photodegradation ; Photooxidation ; Porous core-shell microspheres ; Redox potential ; Separation ; Solid solutions ; Tin dioxide ; Titanium dioxide ; TixSn1-xO2 solid solutions ; Ultrahigh photooxidation performance ; Ultraviolet radiation</subject><ispartof>Applied catalysis. B, Environmental, 2019-05, Vol.244, p.45-55</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 5, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-ca370925cf659feb57c1f18d6578d5ab556d10b4b6e0fb4c7bed36214d6c119e3</citedby><cites>FETCH-LOGICAL-c371t-ca370925cf659feb57c1f18d6578d5ab556d10b4b6e0fb4c7bed36214d6c119e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926337318310956$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Tian, Qinfen</creatorcontrib><creatorcontrib>Wei, Wenkang</creatorcontrib><creatorcontrib>Dai, Juguo</creatorcontrib><creatorcontrib>Sun, Qianqian</creatorcontrib><creatorcontrib>Zhuang, Jiandong</creatorcontrib><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Fan, Mizi</creatorcontrib><creatorcontrib>Chen, Lihui</creatorcontrib><title>Porous core-shell TixSn1-xO2 solid solutions with broad-light response: One-pot synthesis and ultrahigh photooxidation performance</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •Porous core-shell TixSn1-xO2 solid solutions are self-developed via Ostwald ripening process.•The solid solutions possess effective light harvesting capacity and charge separation.•The prepared Ti0.7Sn0.3O2 sample shows ultrahigh photo-activity in MO and As(III) removal.•The holes are detected as the main active species for the photooxidation of MO and As(III). Low light-absorption capacity and separation efficiency of photo-generated charges are two major limit factors to achieve high performance of photocatalysts. Herein, porous core-shell TixSn1-xO2 solid solutions with effective light-absorption capacity and charge separation are fabricated through one-pot mild solvothermal method without any surfactant and template. The self-development mechanism of the porous core-shell microspheres includes prior Ti-alkoxide hydrolysis and the spontaneous nucleation of TixSn1-xO2 combined with Ostwald ripening. Interestingly, although both TiO2 and SnO2 are wide band gap semiconductors, the prepared yellow TixSn1-xO2 solid solutions are of controllable band structure and broad-light response capacity. When Ti:Sn molar ratio is 7:3, the Ti0.7Sn0.3O2 sample shows the highest MO-photodegradation rate constant of 0.62 min−1 under UV irradiation, exceeding that of commercial TiO2 (0.04 min−1) by more than 15 times. Particularly, the sample also exhibits ultrahigh photocatalytic activity in MO-photodegradation (0.038 min−1) and As(III) removal (up to 100%) under visible-light (≥420 nm) irradiation. The mechanism study reveals that due to the proper redox potential of SnIV/SnII and the structural defects (e.g., oxygen vacancies) caused by lattice distortion, the photogenerated electrons would be trapped and the holes act as the main active species for the photooxidation reaction of MO and As(III) over TixSn1-xO2 photocatalysts.</description><subject>Absorption</subject><subject>Broad-light responsive</subject><subject>Catalytic activity</subject><subject>Electronics industry</subject><subject>Irradiation</subject><subject>Lattice vacancies</subject><subject>Light effects</subject><subject>Microspheres</subject><subject>Nucleation</subject><subject>Ostwald ripening</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photodegradation</subject><subject>Photooxidation</subject><subject>Porous core-shell microspheres</subject><subject>Redox potential</subject><subject>Separation</subject><subject>Solid solutions</subject><subject>Tin dioxide</subject><subject>Titanium dioxide</subject><subject>TixSn1-xO2 solid solutions</subject><subject>Ultrahigh photooxidation performance</subject><subject>Ultraviolet radiation</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9rGzEQxUVoIK6Tb5CDoGdtNav920OhmKYpBFyIcxZaabYrs15tJW1jX_PJI-Oee5k5zHtveD9C7oFnwKH6vM_UrFXsspxDkwFkvCivyAqaWjDRNOIDWfE2r5gQtbghH0PYc85zkTcr8vbLebcEqp1HFgYcR7qzx-cJ2HGb0-BGa85zidZNgb7aONDOO2XYaH8PkXoMczrgF7qdkM0u0nCa4oDBBqomQ5cxejUkKZ0HF507WqPOUXRG3zt_UJPGW3LdqzHg3b-9Ji8P33ebR_a0_fFz8-2JaVFDZFqJOrUodV-VbY9dWWvooTFVWTemVF1ZVgZ4V3QV8r4rdN2hEVUOhak0QItiTT5dcmfv_iwYoty7xU_ppcyhbfNEJ401KS4q7V0IHns5e3tQ_iSByzNtuZcX2vJMWwLIRDvZvl5smBr8tehl0BZTO2M96iiNs_8PeAeQzY1F</recordid><startdate>20190505</startdate><enddate>20190505</enddate><creator>Tian, Qinfen</creator><creator>Wei, Wenkang</creator><creator>Dai, Juguo</creator><creator>Sun, Qianqian</creator><creator>Zhuang, Jiandong</creator><creator>Zheng, Yi</creator><creator>Liu, Ping</creator><creator>Fan, Mizi</creator><creator>Chen, Lihui</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20190505</creationdate><title>Porous core-shell TixSn1-xO2 solid solutions with broad-light response: One-pot synthesis and ultrahigh photooxidation performance</title><author>Tian, Qinfen ; Wei, Wenkang ; Dai, Juguo ; Sun, Qianqian ; Zhuang, Jiandong ; Zheng, Yi ; Liu, Ping ; Fan, Mizi ; Chen, Lihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-ca370925cf659feb57c1f18d6578d5ab556d10b4b6e0fb4c7bed36214d6c119e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption</topic><topic>Broad-light responsive</topic><topic>Catalytic activity</topic><topic>Electronics industry</topic><topic>Irradiation</topic><topic>Lattice vacancies</topic><topic>Light effects</topic><topic>Microspheres</topic><topic>Nucleation</topic><topic>Ostwald ripening</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photodegradation</topic><topic>Photooxidation</topic><topic>Porous core-shell microspheres</topic><topic>Redox potential</topic><topic>Separation</topic><topic>Solid solutions</topic><topic>Tin dioxide</topic><topic>Titanium dioxide</topic><topic>TixSn1-xO2 solid solutions</topic><topic>Ultrahigh photooxidation performance</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Qinfen</creatorcontrib><creatorcontrib>Wei, Wenkang</creatorcontrib><creatorcontrib>Dai, Juguo</creatorcontrib><creatorcontrib>Sun, Qianqian</creatorcontrib><creatorcontrib>Zhuang, Jiandong</creatorcontrib><creatorcontrib>Zheng, Yi</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Fan, Mizi</creatorcontrib><creatorcontrib>Chen, Lihui</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Qinfen</au><au>Wei, Wenkang</au><au>Dai, Juguo</au><au>Sun, Qianqian</au><au>Zhuang, Jiandong</au><au>Zheng, Yi</au><au>Liu, Ping</au><au>Fan, Mizi</au><au>Chen, Lihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous core-shell TixSn1-xO2 solid solutions with broad-light response: One-pot synthesis and ultrahigh photooxidation performance</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2019-05-05</date><risdate>2019</risdate><volume>244</volume><spage>45</spage><epage>55</epage><pages>45-55</pages><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •Porous core-shell TixSn1-xO2 solid solutions are self-developed via Ostwald ripening process.•The solid solutions possess effective light harvesting capacity and charge separation.•The prepared Ti0.7Sn0.3O2 sample shows ultrahigh photo-activity in MO and As(III) removal.•The holes are detected as the main active species for the photooxidation of MO and As(III). Low light-absorption capacity and separation efficiency of photo-generated charges are two major limit factors to achieve high performance of photocatalysts. Herein, porous core-shell TixSn1-xO2 solid solutions with effective light-absorption capacity and charge separation are fabricated through one-pot mild solvothermal method without any surfactant and template. The self-development mechanism of the porous core-shell microspheres includes prior Ti-alkoxide hydrolysis and the spontaneous nucleation of TixSn1-xO2 combined with Ostwald ripening. Interestingly, although both TiO2 and SnO2 are wide band gap semiconductors, the prepared yellow TixSn1-xO2 solid solutions are of controllable band structure and broad-light response capacity. When Ti:Sn molar ratio is 7:3, the Ti0.7Sn0.3O2 sample shows the highest MO-photodegradation rate constant of 0.62 min−1 under UV irradiation, exceeding that of commercial TiO2 (0.04 min−1) by more than 15 times. Particularly, the sample also exhibits ultrahigh photocatalytic activity in MO-photodegradation (0.038 min−1) and As(III) removal (up to 100%) under visible-light (≥420 nm) irradiation. The mechanism study reveals that due to the proper redox potential of SnIV/SnII and the structural defects (e.g., oxygen vacancies) caused by lattice distortion, the photogenerated electrons would be trapped and the holes act as the main active species for the photooxidation reaction of MO and As(III) over TixSn1-xO2 photocatalysts.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2018.11.045</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2019-05, Vol.244, p.45-55
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2199233792
source Elsevier ScienceDirect Journals
subjects Absorption
Broad-light responsive
Catalytic activity
Electronics industry
Irradiation
Lattice vacancies
Light effects
Microspheres
Nucleation
Ostwald ripening
Photocatalysis
Photocatalysts
Photodegradation
Photooxidation
Porous core-shell microspheres
Redox potential
Separation
Solid solutions
Tin dioxide
Titanium dioxide
TixSn1-xO2 solid solutions
Ultrahigh photooxidation performance
Ultraviolet radiation
title Porous core-shell TixSn1-xO2 solid solutions with broad-light response: One-pot synthesis and ultrahigh photooxidation performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20core-shell%20TixSn1-xO2%20solid%20solutions%20with%20broad-light%20response:%20One-pot%20synthesis%20and%20ultrahigh%20photooxidation%20performance&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Tian,%20Qinfen&rft.date=2019-05-05&rft.volume=244&rft.spage=45&rft.epage=55&rft.pages=45-55&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2018.11.045&rft_dat=%3Cproquest_cross%3E2199233792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199233792&rft_id=info:pmid/&rft_els_id=S0926337318310956&rfr_iscdi=true