Blended numerical schemes for the advection equation and conservation laws
In this paper we propose a method to couple two or more explicit numerical schemes approximating the same time-dependent PDE, aiming at creating a new scheme which inherits advantages of the original ones. We consider both advection equations and nonlinear conservation laws. By coupling a macroscopi...
Gespeichert in:
Veröffentlicht in: | ESAIM. Mathematical modelling and numerical analysis 2017-05, Vol.51 (3), p.997-1019 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1019 |
---|---|
container_issue | 3 |
container_start_page | 997 |
container_title | ESAIM. Mathematical modelling and numerical analysis |
container_volume | 51 |
creator | Cacace, Simone Cristiani, Emiliano Ferretti, Roberto |
description | In this paper we propose a method to couple two or more explicit numerical schemes approximating the same time-dependent PDE, aiming at creating a new scheme which inherits advantages of the original ones. We consider both advection equations and nonlinear conservation laws. By coupling a macroscopic (Eulerian) scheme with a microscopic (Lagrangian) scheme, we get a new kind of multiscale numerical method. |
doi_str_mv | 10.1051/m2an/2016047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199233054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199233054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-bcee67dfe732b6e67fe53a83f7e88752be40775f7bcecfe00f71f7742ca3fbd13</originalsourceid><addsrcrecordid>eNo90E1Lw0AQBuBFFKzVmz8g4NXY2a9selTRVinowa_bstnM0tR8tLtJ1X9vaoqneRkeZuAl5JzCFQVJJxUz9YQBTUCoAzKibAoxTwU9JCNQiYhlyj-OyUkIKwCgIOSIPN6UWOeYR3VXoS-sKaNgl1hhiFzjo3aJkcm3aNuiqSPcdOYvmDqPbFMH9NthUZqvcEqOnCkDnu3nmLze373czuPF0-zh9noRWw60jTOLmKjcoeIsS_roUHKTcqcwTZVkGQpQSjrVQ-sQwCnqlBLMGu6ynPIxuRjurn2z6TC0etV0vu5fakanU8Y5SNGry0FZ34Tg0em1LyrjfzQFvWtL79rS-7Z6Hg-8CC1-_1vjP3WiuJI6hXf9PBfzt1kKmvNfAoBtOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199233054</pqid></control><display><type>article</type><title>Blended numerical schemes for the advection equation and conservation laws</title><source>Alma/SFX Local Collection</source><creator>Cacace, Simone ; Cristiani, Emiliano ; Ferretti, Roberto</creator><creatorcontrib>Cacace, Simone ; Cristiani, Emiliano ; Ferretti, Roberto</creatorcontrib><description>In this paper we propose a method to couple two or more explicit numerical schemes approximating the same time-dependent PDE, aiming at creating a new scheme which inherits advantages of the original ones. We consider both advection equations and nonlinear conservation laws. By coupling a macroscopic (Eulerian) scheme with a microscopic (Lagrangian) scheme, we get a new kind of multiscale numerical method.</description><identifier>ISSN: 0764-583X</identifier><identifier>EISSN: 1290-3841</identifier><identifier>DOI: 10.1051/m2an/2016047</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>65M12 ; 65M99 ; Advection ; advection equation ; Conservation laws ; coupled algorithms ; filtered schemes ; hyperbolic problems ; Multiscale analysis ; Multiscale numerical schemes ; Nonlinear equations ; Numerical methods ; particle level-set method ; particle-in-cell method ; smoothed-particle hydrodynamics method ; theta methods ; Time dependence</subject><ispartof>ESAIM. Mathematical modelling and numerical analysis, 2017-05, Vol.51 (3), p.997-1019</ispartof><rights>2017. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-m2an.org/articles/m2an/abs/2017/03/m2an150141/m2an150141.html .</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-bcee67dfe732b6e67fe53a83f7e88752be40775f7bcecfe00f71f7742ca3fbd13</citedby><cites>FETCH-LOGICAL-c301t-bcee67dfe732b6e67fe53a83f7e88752be40775f7bcecfe00f71f7742ca3fbd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cacace, Simone</creatorcontrib><creatorcontrib>Cristiani, Emiliano</creatorcontrib><creatorcontrib>Ferretti, Roberto</creatorcontrib><title>Blended numerical schemes for the advection equation and conservation laws</title><title>ESAIM. Mathematical modelling and numerical analysis</title><description>In this paper we propose a method to couple two or more explicit numerical schemes approximating the same time-dependent PDE, aiming at creating a new scheme which inherits advantages of the original ones. We consider both advection equations and nonlinear conservation laws. By coupling a macroscopic (Eulerian) scheme with a microscopic (Lagrangian) scheme, we get a new kind of multiscale numerical method.</description><subject>65M12</subject><subject>65M99</subject><subject>Advection</subject><subject>advection equation</subject><subject>Conservation laws</subject><subject>coupled algorithms</subject><subject>filtered schemes</subject><subject>hyperbolic problems</subject><subject>Multiscale analysis</subject><subject>Multiscale numerical schemes</subject><subject>Nonlinear equations</subject><subject>Numerical methods</subject><subject>particle level-set method</subject><subject>particle-in-cell method</subject><subject>smoothed-particle hydrodynamics method</subject><subject>theta methods</subject><subject>Time dependence</subject><issn>0764-583X</issn><issn>1290-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo90E1Lw0AQBuBFFKzVmz8g4NXY2a9selTRVinowa_bstnM0tR8tLtJ1X9vaoqneRkeZuAl5JzCFQVJJxUz9YQBTUCoAzKibAoxTwU9JCNQiYhlyj-OyUkIKwCgIOSIPN6UWOeYR3VXoS-sKaNgl1hhiFzjo3aJkcm3aNuiqSPcdOYvmDqPbFMH9NthUZqvcEqOnCkDnu3nmLze373czuPF0-zh9noRWw60jTOLmKjcoeIsS_roUHKTcqcwTZVkGQpQSjrVQ-sQwCnqlBLMGu6ynPIxuRjurn2z6TC0etV0vu5fakanU8Y5SNGry0FZ34Tg0em1LyrjfzQFvWtL79rS-7Z6Hg-8CC1-_1vjP3WiuJI6hXf9PBfzt1kKmvNfAoBtOQ</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Cacace, Simone</creator><creator>Cristiani, Emiliano</creator><creator>Ferretti, Roberto</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201705</creationdate><title>Blended numerical schemes for the advection equation and conservation laws</title><author>Cacace, Simone ; Cristiani, Emiliano ; Ferretti, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-bcee67dfe732b6e67fe53a83f7e88752be40775f7bcecfe00f71f7742ca3fbd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>65M12</topic><topic>65M99</topic><topic>Advection</topic><topic>advection equation</topic><topic>Conservation laws</topic><topic>coupled algorithms</topic><topic>filtered schemes</topic><topic>hyperbolic problems</topic><topic>Multiscale analysis</topic><topic>Multiscale numerical schemes</topic><topic>Nonlinear equations</topic><topic>Numerical methods</topic><topic>particle level-set method</topic><topic>particle-in-cell method</topic><topic>smoothed-particle hydrodynamics method</topic><topic>theta methods</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cacace, Simone</creatorcontrib><creatorcontrib>Cristiani, Emiliano</creatorcontrib><creatorcontrib>Ferretti, Roberto</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cacace, Simone</au><au>Cristiani, Emiliano</au><au>Ferretti, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blended numerical schemes for the advection equation and conservation laws</atitle><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle><date>2017-05</date><risdate>2017</risdate><volume>51</volume><issue>3</issue><spage>997</spage><epage>1019</epage><pages>997-1019</pages><issn>0764-583X</issn><eissn>1290-3841</eissn><abstract>In this paper we propose a method to couple two or more explicit numerical schemes approximating the same time-dependent PDE, aiming at creating a new scheme which inherits advantages of the original ones. We consider both advection equations and nonlinear conservation laws. By coupling a macroscopic (Eulerian) scheme with a microscopic (Lagrangian) scheme, we get a new kind of multiscale numerical method.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/m2an/2016047</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0764-583X |
ispartof | ESAIM. Mathematical modelling and numerical analysis, 2017-05, Vol.51 (3), p.997-1019 |
issn | 0764-583X 1290-3841 |
language | eng |
recordid | cdi_proquest_journals_2199233054 |
source | Alma/SFX Local Collection |
subjects | 65M12 65M99 Advection advection equation Conservation laws coupled algorithms filtered schemes hyperbolic problems Multiscale analysis Multiscale numerical schemes Nonlinear equations Numerical methods particle level-set method particle-in-cell method smoothed-particle hydrodynamics method theta methods Time dependence |
title | Blended numerical schemes for the advection equation and conservation laws |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A26%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blended%20numerical%20schemes%20for%20the%20advection%20equation%20and%20conservation%20laws&rft.jtitle=ESAIM.%20Mathematical%20modelling%20and%20numerical%20analysis&rft.au=Cacace,%20Simone&rft.date=2017-05&rft.volume=51&rft.issue=3&rft.spage=997&rft.epage=1019&rft.pages=997-1019&rft.issn=0764-583X&rft.eissn=1290-3841&rft_id=info:doi/10.1051/m2an/2016047&rft_dat=%3Cproquest_cross%3E2199233054%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199233054&rft_id=info:pmid/&rfr_iscdi=true |