Gingerbread ingredient-derived carbons-assembled CNT foam for the efficient peroxymonosulfate-mediated degradation of emerging pharmaceutical contaminants

Fusion thermolysis followed by low-temperature pyrolysis of baking ingredients macronized magnetic CNTs into macroscale 3D hierarchical porous heteroatom-doped carbofoams, showing enriched accommodation of graphitized interfaces for improved catalytic power and material durability in the oxidative a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2019-05, Vol.244, p.367-384
Hauptverfasser: Minh, Tam Do, Ncibi, Mohamed Chaker, Srivastava, Varsha, Thangaraj, Senthil Kumar, Jänis, Janne, Sillanpää, Mika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 384
container_issue
container_start_page 367
container_title Applied catalysis. B, Environmental
container_volume 244
creator Minh, Tam Do
Ncibi, Mohamed Chaker
Srivastava, Varsha
Thangaraj, Senthil Kumar
Jänis, Janne
Sillanpää, Mika
description Fusion thermolysis followed by low-temperature pyrolysis of baking ingredients macronized magnetic CNTs into macroscale 3D hierarchical porous heteroatom-doped carbofoams, showing enriched accommodation of graphitized interfaces for improved catalytic power and material durability in the oxidative abatement of various recalcitrant pharmaceutical contaminants. [Display omitted] •Baking ingredients fused magnetic nanotubes into 3D porous foams via mild pyrolysis.•Structured porosity and heteroatom doping boost catalytic power toward activating PMS.•Highly active and stable catalyst under various process conditions and water matrices.•Dual-mode activation mechanism of PMS and degradation pathways of PhACs are proposed.•Multicycle reuse with facile magnetic-driven coordination, separation, and recovery. This article reports on the macronization of self-supported 3D CNT foam inter-connected by heteroatom-enriched porous shells derived from renewable baking ingredients via mild pyrolysis. The synthesized hybrids enabled disintegrating peroxymonosulfate (PMS) into reactive oxidants (sulfate radicals, hydroxyl radicals, and singlet oxygen) for the degradation of atenolol, iopamidol, metformin, trimethoprim, and phenol in water. Hierarchically structured nitrogen- and oxygen-doping significantly enhanced adsorptive and catalytic performance whereas the magnetic 3D framework promoted mass transport, multicycle use and induced synergetic effects via the Me-Nx-C interfaces. The samples were highly efficient for degradative removal of model pollutants at low catalyst and PMS dose. The catalyst loading, PMS dose, contact time, and temperature positively influenced the removal potency while pH and water matrix governed the rates differently. Spin trapping, oxidant quenching and solvent isotope effect study coupled with liquid chromatography and Fourier transform ion cyclotron resonance mass spectrometry analysis suggested the footprints of transformation products via a dual-mode (radical and non-radical) activation of PMS. This durable, magnetic carbofoam might be a promising catalyst for the oxidative abatement of pharmaceutical micropollutants from contaminated waters.
doi_str_mv 10.1016/j.apcatb.2018.11.064
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199232542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337318311226</els_id><sourcerecordid>2199232542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-dfa2c3e2abe2ad52216bb76cbe9145392ba0be11c206428ee5ea0049fc3d881f3</originalsourceid><addsrcrecordid>eNp9UcuOEzEQtBBIhIU_4GCJ8wx-TCYzFyQUwYK0gstyttp2O-soYw9tZ8X-Cl-7jsKZg91Wq6vKXcXYeyl6KeT48djD6qDaXgk59VL2YhxesI2cdrrT06Rfso2Y1dhpvdOv2ZtSjkIIpdW0YX9vYzogWULwvD0JfcRUO48UH9FzB2RzKh2Ugos9tc7-xz0PGZZ2Ea8PyDGE6C4gviLlP09LTrmcTwEqdkuja9VzjwcCDzXmxHPguCAdmhxfH4AWcHiu0cGJu5wqLDFBquUtexXgVPDdv3rDfn39cr__1t39vP2-_3zXuUHu2k8DKKdRgW3Hb5WSo7W70Vmc5bDVs7IgLErpVHNFTYhbBCGGOTjtp0kGfcM-XHlXyr_PWKo55jOlJmmUnOfm03ZQbWq4TjnKpRAGs1JcgJ6MFOaSgjmaawrmkoKR0jS9Bvt0hWHb4DEimXLxyjVfCF01Psf_EzwDhXuXTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199232542</pqid></control><display><type>article</type><title>Gingerbread ingredient-derived carbons-assembled CNT foam for the efficient peroxymonosulfate-mediated degradation of emerging pharmaceutical contaminants</title><source>Elsevier ScienceDirect Journals</source><creator>Minh, Tam Do ; Ncibi, Mohamed Chaker ; Srivastava, Varsha ; Thangaraj, Senthil Kumar ; Jänis, Janne ; Sillanpää, Mika</creator><creatorcontrib>Minh, Tam Do ; Ncibi, Mohamed Chaker ; Srivastava, Varsha ; Thangaraj, Senthil Kumar ; Jänis, Janne ; Sillanpää, Mika</creatorcontrib><description>Fusion thermolysis followed by low-temperature pyrolysis of baking ingredients macronized magnetic CNTs into macroscale 3D hierarchical porous heteroatom-doped carbofoams, showing enriched accommodation of graphitized interfaces for improved catalytic power and material durability in the oxidative abatement of various recalcitrant pharmaceutical contaminants. [Display omitted] •Baking ingredients fused magnetic nanotubes into 3D porous foams via mild pyrolysis.•Structured porosity and heteroatom doping boost catalytic power toward activating PMS.•Highly active and stable catalyst under various process conditions and water matrices.•Dual-mode activation mechanism of PMS and degradation pathways of PhACs are proposed.•Multicycle reuse with facile magnetic-driven coordination, separation, and recovery. This article reports on the macronization of self-supported 3D CNT foam inter-connected by heteroatom-enriched porous shells derived from renewable baking ingredients via mild pyrolysis. The synthesized hybrids enabled disintegrating peroxymonosulfate (PMS) into reactive oxidants (sulfate radicals, hydroxyl radicals, and singlet oxygen) for the degradation of atenolol, iopamidol, metformin, trimethoprim, and phenol in water. Hierarchically structured nitrogen- and oxygen-doping significantly enhanced adsorptive and catalytic performance whereas the magnetic 3D framework promoted mass transport, multicycle use and induced synergetic effects via the Me-Nx-C interfaces. The samples were highly efficient for degradative removal of model pollutants at low catalyst and PMS dose. The catalyst loading, PMS dose, contact time, and temperature positively influenced the removal potency while pH and water matrix governed the rates differently. Spin trapping, oxidant quenching and solvent isotope effect study coupled with liquid chromatography and Fourier transform ion cyclotron resonance mass spectrometry analysis suggested the footprints of transformation products via a dual-mode (radical and non-radical) activation of PMS. This durable, magnetic carbofoam might be a promising catalyst for the oxidative abatement of pharmaceutical micropollutants from contaminated waters.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2018.11.064</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adsorptivity ; Atenolol ; Baking ; Carbon nanotubes foam ; Catalysis ; Catalysts ; Contaminants ; Cyclotron resonance ; Degradation ; Disintegration ; Emerging pharmaceutical pollutants ; Fourier transforms ; Free radicals ; Heteroatom doping ; Hybrids ; Hydroxyl radicals ; Interfaces ; Ions ; Isotope effect ; Liquid chromatography ; Mass spectrometry ; Mass spectroscopy ; Mass transport ; Metformin ; Oxidants ; Oxidizing agents ; Oxygen ; Peroxymonosulfate-mediated degradation ; Pharmaceuticals ; Phenols ; Pollutant removal ; Pollutants ; Pyrolysis ; Singlet oxygen ; Sulfates ; Transformation products ; Trimethoprim ; Water temperature</subject><ispartof>Applied catalysis. B, Environmental, 2019-05, Vol.244, p.367-384</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 5, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-dfa2c3e2abe2ad52216bb76cbe9145392ba0be11c206428ee5ea0049fc3d881f3</citedby><cites>FETCH-LOGICAL-c417t-dfa2c3e2abe2ad52216bb76cbe9145392ba0be11c206428ee5ea0049fc3d881f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926337318311226$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Minh, Tam Do</creatorcontrib><creatorcontrib>Ncibi, Mohamed Chaker</creatorcontrib><creatorcontrib>Srivastava, Varsha</creatorcontrib><creatorcontrib>Thangaraj, Senthil Kumar</creatorcontrib><creatorcontrib>Jänis, Janne</creatorcontrib><creatorcontrib>Sillanpää, Mika</creatorcontrib><title>Gingerbread ingredient-derived carbons-assembled CNT foam for the efficient peroxymonosulfate-mediated degradation of emerging pharmaceutical contaminants</title><title>Applied catalysis. B, Environmental</title><description>Fusion thermolysis followed by low-temperature pyrolysis of baking ingredients macronized magnetic CNTs into macroscale 3D hierarchical porous heteroatom-doped carbofoams, showing enriched accommodation of graphitized interfaces for improved catalytic power and material durability in the oxidative abatement of various recalcitrant pharmaceutical contaminants. [Display omitted] •Baking ingredients fused magnetic nanotubes into 3D porous foams via mild pyrolysis.•Structured porosity and heteroatom doping boost catalytic power toward activating PMS.•Highly active and stable catalyst under various process conditions and water matrices.•Dual-mode activation mechanism of PMS and degradation pathways of PhACs are proposed.•Multicycle reuse with facile magnetic-driven coordination, separation, and recovery. This article reports on the macronization of self-supported 3D CNT foam inter-connected by heteroatom-enriched porous shells derived from renewable baking ingredients via mild pyrolysis. The synthesized hybrids enabled disintegrating peroxymonosulfate (PMS) into reactive oxidants (sulfate radicals, hydroxyl radicals, and singlet oxygen) for the degradation of atenolol, iopamidol, metformin, trimethoprim, and phenol in water. Hierarchically structured nitrogen- and oxygen-doping significantly enhanced adsorptive and catalytic performance whereas the magnetic 3D framework promoted mass transport, multicycle use and induced synergetic effects via the Me-Nx-C interfaces. The samples were highly efficient for degradative removal of model pollutants at low catalyst and PMS dose. The catalyst loading, PMS dose, contact time, and temperature positively influenced the removal potency while pH and water matrix governed the rates differently. Spin trapping, oxidant quenching and solvent isotope effect study coupled with liquid chromatography and Fourier transform ion cyclotron resonance mass spectrometry analysis suggested the footprints of transformation products via a dual-mode (radical and non-radical) activation of PMS. This durable, magnetic carbofoam might be a promising catalyst for the oxidative abatement of pharmaceutical micropollutants from contaminated waters.</description><subject>Adsorptivity</subject><subject>Atenolol</subject><subject>Baking</subject><subject>Carbon nanotubes foam</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Contaminants</subject><subject>Cyclotron resonance</subject><subject>Degradation</subject><subject>Disintegration</subject><subject>Emerging pharmaceutical pollutants</subject><subject>Fourier transforms</subject><subject>Free radicals</subject><subject>Heteroatom doping</subject><subject>Hybrids</subject><subject>Hydroxyl radicals</subject><subject>Interfaces</subject><subject>Ions</subject><subject>Isotope effect</subject><subject>Liquid chromatography</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mass transport</subject><subject>Metformin</subject><subject>Oxidants</subject><subject>Oxidizing agents</subject><subject>Oxygen</subject><subject>Peroxymonosulfate-mediated degradation</subject><subject>Pharmaceuticals</subject><subject>Phenols</subject><subject>Pollutant removal</subject><subject>Pollutants</subject><subject>Pyrolysis</subject><subject>Singlet oxygen</subject><subject>Sulfates</subject><subject>Transformation products</subject><subject>Trimethoprim</subject><subject>Water temperature</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UcuOEzEQtBBIhIU_4GCJ8wx-TCYzFyQUwYK0gstyttp2O-soYw9tZ8X-Cl-7jsKZg91Wq6vKXcXYeyl6KeT48djD6qDaXgk59VL2YhxesI2cdrrT06Rfso2Y1dhpvdOv2ZtSjkIIpdW0YX9vYzogWULwvD0JfcRUO48UH9FzB2RzKh2Ugos9tc7-xz0PGZZ2Ea8PyDGE6C4gviLlP09LTrmcTwEqdkuja9VzjwcCDzXmxHPguCAdmhxfH4AWcHiu0cGJu5wqLDFBquUtexXgVPDdv3rDfn39cr__1t39vP2-_3zXuUHu2k8DKKdRgW3Hb5WSo7W70Vmc5bDVs7IgLErpVHNFTYhbBCGGOTjtp0kGfcM-XHlXyr_PWKo55jOlJmmUnOfm03ZQbWq4TjnKpRAGs1JcgJ6MFOaSgjmaawrmkoKR0jS9Bvt0hWHb4DEimXLxyjVfCF01Psf_EzwDhXuXTQ</recordid><startdate>20190505</startdate><enddate>20190505</enddate><creator>Minh, Tam Do</creator><creator>Ncibi, Mohamed Chaker</creator><creator>Srivastava, Varsha</creator><creator>Thangaraj, Senthil Kumar</creator><creator>Jänis, Janne</creator><creator>Sillanpää, Mika</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20190505</creationdate><title>Gingerbread ingredient-derived carbons-assembled CNT foam for the efficient peroxymonosulfate-mediated degradation of emerging pharmaceutical contaminants</title><author>Minh, Tam Do ; Ncibi, Mohamed Chaker ; Srivastava, Varsha ; Thangaraj, Senthil Kumar ; Jänis, Janne ; Sillanpää, Mika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-dfa2c3e2abe2ad52216bb76cbe9145392ba0be11c206428ee5ea0049fc3d881f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorptivity</topic><topic>Atenolol</topic><topic>Baking</topic><topic>Carbon nanotubes foam</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Contaminants</topic><topic>Cyclotron resonance</topic><topic>Degradation</topic><topic>Disintegration</topic><topic>Emerging pharmaceutical pollutants</topic><topic>Fourier transforms</topic><topic>Free radicals</topic><topic>Heteroatom doping</topic><topic>Hybrids</topic><topic>Hydroxyl radicals</topic><topic>Interfaces</topic><topic>Ions</topic><topic>Isotope effect</topic><topic>Liquid chromatography</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mass transport</topic><topic>Metformin</topic><topic>Oxidants</topic><topic>Oxidizing agents</topic><topic>Oxygen</topic><topic>Peroxymonosulfate-mediated degradation</topic><topic>Pharmaceuticals</topic><topic>Phenols</topic><topic>Pollutant removal</topic><topic>Pollutants</topic><topic>Pyrolysis</topic><topic>Singlet oxygen</topic><topic>Sulfates</topic><topic>Transformation products</topic><topic>Trimethoprim</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minh, Tam Do</creatorcontrib><creatorcontrib>Ncibi, Mohamed Chaker</creatorcontrib><creatorcontrib>Srivastava, Varsha</creatorcontrib><creatorcontrib>Thangaraj, Senthil Kumar</creatorcontrib><creatorcontrib>Jänis, Janne</creatorcontrib><creatorcontrib>Sillanpää, Mika</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minh, Tam Do</au><au>Ncibi, Mohamed Chaker</au><au>Srivastava, Varsha</au><au>Thangaraj, Senthil Kumar</au><au>Jänis, Janne</au><au>Sillanpää, Mika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gingerbread ingredient-derived carbons-assembled CNT foam for the efficient peroxymonosulfate-mediated degradation of emerging pharmaceutical contaminants</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2019-05-05</date><risdate>2019</risdate><volume>244</volume><spage>367</spage><epage>384</epage><pages>367-384</pages><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>Fusion thermolysis followed by low-temperature pyrolysis of baking ingredients macronized magnetic CNTs into macroscale 3D hierarchical porous heteroatom-doped carbofoams, showing enriched accommodation of graphitized interfaces for improved catalytic power and material durability in the oxidative abatement of various recalcitrant pharmaceutical contaminants. [Display omitted] •Baking ingredients fused magnetic nanotubes into 3D porous foams via mild pyrolysis.•Structured porosity and heteroatom doping boost catalytic power toward activating PMS.•Highly active and stable catalyst under various process conditions and water matrices.•Dual-mode activation mechanism of PMS and degradation pathways of PhACs are proposed.•Multicycle reuse with facile magnetic-driven coordination, separation, and recovery. This article reports on the macronization of self-supported 3D CNT foam inter-connected by heteroatom-enriched porous shells derived from renewable baking ingredients via mild pyrolysis. The synthesized hybrids enabled disintegrating peroxymonosulfate (PMS) into reactive oxidants (sulfate radicals, hydroxyl radicals, and singlet oxygen) for the degradation of atenolol, iopamidol, metformin, trimethoprim, and phenol in water. Hierarchically structured nitrogen- and oxygen-doping significantly enhanced adsorptive and catalytic performance whereas the magnetic 3D framework promoted mass transport, multicycle use and induced synergetic effects via the Me-Nx-C interfaces. The samples were highly efficient for degradative removal of model pollutants at low catalyst and PMS dose. The catalyst loading, PMS dose, contact time, and temperature positively influenced the removal potency while pH and water matrix governed the rates differently. Spin trapping, oxidant quenching and solvent isotope effect study coupled with liquid chromatography and Fourier transform ion cyclotron resonance mass spectrometry analysis suggested the footprints of transformation products via a dual-mode (radical and non-radical) activation of PMS. This durable, magnetic carbofoam might be a promising catalyst for the oxidative abatement of pharmaceutical micropollutants from contaminated waters.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2018.11.064</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2019-05, Vol.244, p.367-384
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2199232542
source Elsevier ScienceDirect Journals
subjects Adsorptivity
Atenolol
Baking
Carbon nanotubes foam
Catalysis
Catalysts
Contaminants
Cyclotron resonance
Degradation
Disintegration
Emerging pharmaceutical pollutants
Fourier transforms
Free radicals
Heteroatom doping
Hybrids
Hydroxyl radicals
Interfaces
Ions
Isotope effect
Liquid chromatography
Mass spectrometry
Mass spectroscopy
Mass transport
Metformin
Oxidants
Oxidizing agents
Oxygen
Peroxymonosulfate-mediated degradation
Pharmaceuticals
Phenols
Pollutant removal
Pollutants
Pyrolysis
Singlet oxygen
Sulfates
Transformation products
Trimethoprim
Water temperature
title Gingerbread ingredient-derived carbons-assembled CNT foam for the efficient peroxymonosulfate-mediated degradation of emerging pharmaceutical contaminants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gingerbread%20ingredient-derived%20carbons-assembled%20CNT%20foam%20for%20the%20efficient%20peroxymonosulfate-mediated%20degradation%20of%20emerging%20pharmaceutical%20contaminants&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Minh,%20Tam%20Do&rft.date=2019-05-05&rft.volume=244&rft.spage=367&rft.epage=384&rft.pages=367-384&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2018.11.064&rft_dat=%3Cproquest_cross%3E2199232542%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199232542&rft_id=info:pmid/&rft_els_id=S0926337318311226&rfr_iscdi=true