Gingerbread ingredient-derived carbons-assembled CNT foam for the efficient peroxymonosulfate-mediated degradation of emerging pharmaceutical contaminants
Fusion thermolysis followed by low-temperature pyrolysis of baking ingredients macronized magnetic CNTs into macroscale 3D hierarchical porous heteroatom-doped carbofoams, showing enriched accommodation of graphitized interfaces for improved catalytic power and material durability in the oxidative a...
Gespeichert in:
Veröffentlicht in: | Applied catalysis. B, Environmental Environmental, 2019-05, Vol.244, p.367-384 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 384 |
---|---|
container_issue | |
container_start_page | 367 |
container_title | Applied catalysis. B, Environmental |
container_volume | 244 |
creator | Minh, Tam Do Ncibi, Mohamed Chaker Srivastava, Varsha Thangaraj, Senthil Kumar Jänis, Janne Sillanpää, Mika |
description | Fusion thermolysis followed by low-temperature pyrolysis of baking ingredients macronized magnetic CNTs into macroscale 3D hierarchical porous heteroatom-doped carbofoams, showing enriched accommodation of graphitized interfaces for improved catalytic power and material durability in the oxidative abatement of various recalcitrant pharmaceutical contaminants.
[Display omitted]
•Baking ingredients fused magnetic nanotubes into 3D porous foams via mild pyrolysis.•Structured porosity and heteroatom doping boost catalytic power toward activating PMS.•Highly active and stable catalyst under various process conditions and water matrices.•Dual-mode activation mechanism of PMS and degradation pathways of PhACs are proposed.•Multicycle reuse with facile magnetic-driven coordination, separation, and recovery.
This article reports on the macronization of self-supported 3D CNT foam inter-connected by heteroatom-enriched porous shells derived from renewable baking ingredients via mild pyrolysis. The synthesized hybrids enabled disintegrating peroxymonosulfate (PMS) into reactive oxidants (sulfate radicals, hydroxyl radicals, and singlet oxygen) for the degradation of atenolol, iopamidol, metformin, trimethoprim, and phenol in water. Hierarchically structured nitrogen- and oxygen-doping significantly enhanced adsorptive and catalytic performance whereas the magnetic 3D framework promoted mass transport, multicycle use and induced synergetic effects via the Me-Nx-C interfaces. The samples were highly efficient for degradative removal of model pollutants at low catalyst and PMS dose. The catalyst loading, PMS dose, contact time, and temperature positively influenced the removal potency while pH and water matrix governed the rates differently. Spin trapping, oxidant quenching and solvent isotope effect study coupled with liquid chromatography and Fourier transform ion cyclotron resonance mass spectrometry analysis suggested the footprints of transformation products via a dual-mode (radical and non-radical) activation of PMS. This durable, magnetic carbofoam might be a promising catalyst for the oxidative abatement of pharmaceutical micropollutants from contaminated waters. |
doi_str_mv | 10.1016/j.apcatb.2018.11.064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199232542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337318311226</els_id><sourcerecordid>2199232542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-dfa2c3e2abe2ad52216bb76cbe9145392ba0be11c206428ee5ea0049fc3d881f3</originalsourceid><addsrcrecordid>eNp9UcuOEzEQtBBIhIU_4GCJ8wx-TCYzFyQUwYK0gstyttp2O-soYw9tZ8X-Cl-7jsKZg91Wq6vKXcXYeyl6KeT48djD6qDaXgk59VL2YhxesI2cdrrT06Rfso2Y1dhpvdOv2ZtSjkIIpdW0YX9vYzogWULwvD0JfcRUO48UH9FzB2RzKh2Ugos9tc7-xz0PGZZ2Ea8PyDGE6C4gviLlP09LTrmcTwEqdkuja9VzjwcCDzXmxHPguCAdmhxfH4AWcHiu0cGJu5wqLDFBquUtexXgVPDdv3rDfn39cr__1t39vP2-_3zXuUHu2k8DKKdRgW3Hb5WSo7W70Vmc5bDVs7IgLErpVHNFTYhbBCGGOTjtp0kGfcM-XHlXyr_PWKo55jOlJmmUnOfm03ZQbWq4TjnKpRAGs1JcgJ6MFOaSgjmaawrmkoKR0jS9Bvt0hWHb4DEimXLxyjVfCF01Psf_EzwDhXuXTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199232542</pqid></control><display><type>article</type><title>Gingerbread ingredient-derived carbons-assembled CNT foam for the efficient peroxymonosulfate-mediated degradation of emerging pharmaceutical contaminants</title><source>Elsevier ScienceDirect Journals</source><creator>Minh, Tam Do ; Ncibi, Mohamed Chaker ; Srivastava, Varsha ; Thangaraj, Senthil Kumar ; Jänis, Janne ; Sillanpää, Mika</creator><creatorcontrib>Minh, Tam Do ; Ncibi, Mohamed Chaker ; Srivastava, Varsha ; Thangaraj, Senthil Kumar ; Jänis, Janne ; Sillanpää, Mika</creatorcontrib><description>Fusion thermolysis followed by low-temperature pyrolysis of baking ingredients macronized magnetic CNTs into macroscale 3D hierarchical porous heteroatom-doped carbofoams, showing enriched accommodation of graphitized interfaces for improved catalytic power and material durability in the oxidative abatement of various recalcitrant pharmaceutical contaminants.
[Display omitted]
•Baking ingredients fused magnetic nanotubes into 3D porous foams via mild pyrolysis.•Structured porosity and heteroatom doping boost catalytic power toward activating PMS.•Highly active and stable catalyst under various process conditions and water matrices.•Dual-mode activation mechanism of PMS and degradation pathways of PhACs are proposed.•Multicycle reuse with facile magnetic-driven coordination, separation, and recovery.
This article reports on the macronization of self-supported 3D CNT foam inter-connected by heteroatom-enriched porous shells derived from renewable baking ingredients via mild pyrolysis. The synthesized hybrids enabled disintegrating peroxymonosulfate (PMS) into reactive oxidants (sulfate radicals, hydroxyl radicals, and singlet oxygen) for the degradation of atenolol, iopamidol, metformin, trimethoprim, and phenol in water. Hierarchically structured nitrogen- and oxygen-doping significantly enhanced adsorptive and catalytic performance whereas the magnetic 3D framework promoted mass transport, multicycle use and induced synergetic effects via the Me-Nx-C interfaces. The samples were highly efficient for degradative removal of model pollutants at low catalyst and PMS dose. The catalyst loading, PMS dose, contact time, and temperature positively influenced the removal potency while pH and water matrix governed the rates differently. Spin trapping, oxidant quenching and solvent isotope effect study coupled with liquid chromatography and Fourier transform ion cyclotron resonance mass spectrometry analysis suggested the footprints of transformation products via a dual-mode (radical and non-radical) activation of PMS. This durable, magnetic carbofoam might be a promising catalyst for the oxidative abatement of pharmaceutical micropollutants from contaminated waters.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2018.11.064</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adsorptivity ; Atenolol ; Baking ; Carbon nanotubes foam ; Catalysis ; Catalysts ; Contaminants ; Cyclotron resonance ; Degradation ; Disintegration ; Emerging pharmaceutical pollutants ; Fourier transforms ; Free radicals ; Heteroatom doping ; Hybrids ; Hydroxyl radicals ; Interfaces ; Ions ; Isotope effect ; Liquid chromatography ; Mass spectrometry ; Mass spectroscopy ; Mass transport ; Metformin ; Oxidants ; Oxidizing agents ; Oxygen ; Peroxymonosulfate-mediated degradation ; Pharmaceuticals ; Phenols ; Pollutant removal ; Pollutants ; Pyrolysis ; Singlet oxygen ; Sulfates ; Transformation products ; Trimethoprim ; Water temperature</subject><ispartof>Applied catalysis. B, Environmental, 2019-05, Vol.244, p.367-384</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 5, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-dfa2c3e2abe2ad52216bb76cbe9145392ba0be11c206428ee5ea0049fc3d881f3</citedby><cites>FETCH-LOGICAL-c417t-dfa2c3e2abe2ad52216bb76cbe9145392ba0be11c206428ee5ea0049fc3d881f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926337318311226$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Minh, Tam Do</creatorcontrib><creatorcontrib>Ncibi, Mohamed Chaker</creatorcontrib><creatorcontrib>Srivastava, Varsha</creatorcontrib><creatorcontrib>Thangaraj, Senthil Kumar</creatorcontrib><creatorcontrib>Jänis, Janne</creatorcontrib><creatorcontrib>Sillanpää, Mika</creatorcontrib><title>Gingerbread ingredient-derived carbons-assembled CNT foam for the efficient peroxymonosulfate-mediated degradation of emerging pharmaceutical contaminants</title><title>Applied catalysis. B, Environmental</title><description>Fusion thermolysis followed by low-temperature pyrolysis of baking ingredients macronized magnetic CNTs into macroscale 3D hierarchical porous heteroatom-doped carbofoams, showing enriched accommodation of graphitized interfaces for improved catalytic power and material durability in the oxidative abatement of various recalcitrant pharmaceutical contaminants.
[Display omitted]
•Baking ingredients fused magnetic nanotubes into 3D porous foams via mild pyrolysis.•Structured porosity and heteroatom doping boost catalytic power toward activating PMS.•Highly active and stable catalyst under various process conditions and water matrices.•Dual-mode activation mechanism of PMS and degradation pathways of PhACs are proposed.•Multicycle reuse with facile magnetic-driven coordination, separation, and recovery.
This article reports on the macronization of self-supported 3D CNT foam inter-connected by heteroatom-enriched porous shells derived from renewable baking ingredients via mild pyrolysis. The synthesized hybrids enabled disintegrating peroxymonosulfate (PMS) into reactive oxidants (sulfate radicals, hydroxyl radicals, and singlet oxygen) for the degradation of atenolol, iopamidol, metformin, trimethoprim, and phenol in water. Hierarchically structured nitrogen- and oxygen-doping significantly enhanced adsorptive and catalytic performance whereas the magnetic 3D framework promoted mass transport, multicycle use and induced synergetic effects via the Me-Nx-C interfaces. The samples were highly efficient for degradative removal of model pollutants at low catalyst and PMS dose. The catalyst loading, PMS dose, contact time, and temperature positively influenced the removal potency while pH and water matrix governed the rates differently. Spin trapping, oxidant quenching and solvent isotope effect study coupled with liquid chromatography and Fourier transform ion cyclotron resonance mass spectrometry analysis suggested the footprints of transformation products via a dual-mode (radical and non-radical) activation of PMS. This durable, magnetic carbofoam might be a promising catalyst for the oxidative abatement of pharmaceutical micropollutants from contaminated waters.</description><subject>Adsorptivity</subject><subject>Atenolol</subject><subject>Baking</subject><subject>Carbon nanotubes foam</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Contaminants</subject><subject>Cyclotron resonance</subject><subject>Degradation</subject><subject>Disintegration</subject><subject>Emerging pharmaceutical pollutants</subject><subject>Fourier transforms</subject><subject>Free radicals</subject><subject>Heteroatom doping</subject><subject>Hybrids</subject><subject>Hydroxyl radicals</subject><subject>Interfaces</subject><subject>Ions</subject><subject>Isotope effect</subject><subject>Liquid chromatography</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mass transport</subject><subject>Metformin</subject><subject>Oxidants</subject><subject>Oxidizing agents</subject><subject>Oxygen</subject><subject>Peroxymonosulfate-mediated degradation</subject><subject>Pharmaceuticals</subject><subject>Phenols</subject><subject>Pollutant removal</subject><subject>Pollutants</subject><subject>Pyrolysis</subject><subject>Singlet oxygen</subject><subject>Sulfates</subject><subject>Transformation products</subject><subject>Trimethoprim</subject><subject>Water temperature</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UcuOEzEQtBBIhIU_4GCJ8wx-TCYzFyQUwYK0gstyttp2O-soYw9tZ8X-Cl-7jsKZg91Wq6vKXcXYeyl6KeT48djD6qDaXgk59VL2YhxesI2cdrrT06Rfso2Y1dhpvdOv2ZtSjkIIpdW0YX9vYzogWULwvD0JfcRUO48UH9FzB2RzKh2Ugos9tc7-xz0PGZZ2Ea8PyDGE6C4gviLlP09LTrmcTwEqdkuja9VzjwcCDzXmxHPguCAdmhxfH4AWcHiu0cGJu5wqLDFBquUtexXgVPDdv3rDfn39cr__1t39vP2-_3zXuUHu2k8DKKdRgW3Hb5WSo7W70Vmc5bDVs7IgLErpVHNFTYhbBCGGOTjtp0kGfcM-XHlXyr_PWKo55jOlJmmUnOfm03ZQbWq4TjnKpRAGs1JcgJ6MFOaSgjmaawrmkoKR0jS9Bvt0hWHb4DEimXLxyjVfCF01Psf_EzwDhXuXTQ</recordid><startdate>20190505</startdate><enddate>20190505</enddate><creator>Minh, Tam Do</creator><creator>Ncibi, Mohamed Chaker</creator><creator>Srivastava, Varsha</creator><creator>Thangaraj, Senthil Kumar</creator><creator>Jänis, Janne</creator><creator>Sillanpää, Mika</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20190505</creationdate><title>Gingerbread ingredient-derived carbons-assembled CNT foam for the efficient peroxymonosulfate-mediated degradation of emerging pharmaceutical contaminants</title><author>Minh, Tam Do ; Ncibi, Mohamed Chaker ; Srivastava, Varsha ; Thangaraj, Senthil Kumar ; Jänis, Janne ; Sillanpää, Mika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-dfa2c3e2abe2ad52216bb76cbe9145392ba0be11c206428ee5ea0049fc3d881f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorptivity</topic><topic>Atenolol</topic><topic>Baking</topic><topic>Carbon nanotubes foam</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Contaminants</topic><topic>Cyclotron resonance</topic><topic>Degradation</topic><topic>Disintegration</topic><topic>Emerging pharmaceutical pollutants</topic><topic>Fourier transforms</topic><topic>Free radicals</topic><topic>Heteroatom doping</topic><topic>Hybrids</topic><topic>Hydroxyl radicals</topic><topic>Interfaces</topic><topic>Ions</topic><topic>Isotope effect</topic><topic>Liquid chromatography</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mass transport</topic><topic>Metformin</topic><topic>Oxidants</topic><topic>Oxidizing agents</topic><topic>Oxygen</topic><topic>Peroxymonosulfate-mediated degradation</topic><topic>Pharmaceuticals</topic><topic>Phenols</topic><topic>Pollutant removal</topic><topic>Pollutants</topic><topic>Pyrolysis</topic><topic>Singlet oxygen</topic><topic>Sulfates</topic><topic>Transformation products</topic><topic>Trimethoprim</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minh, Tam Do</creatorcontrib><creatorcontrib>Ncibi, Mohamed Chaker</creatorcontrib><creatorcontrib>Srivastava, Varsha</creatorcontrib><creatorcontrib>Thangaraj, Senthil Kumar</creatorcontrib><creatorcontrib>Jänis, Janne</creatorcontrib><creatorcontrib>Sillanpää, Mika</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minh, Tam Do</au><au>Ncibi, Mohamed Chaker</au><au>Srivastava, Varsha</au><au>Thangaraj, Senthil Kumar</au><au>Jänis, Janne</au><au>Sillanpää, Mika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gingerbread ingredient-derived carbons-assembled CNT foam for the efficient peroxymonosulfate-mediated degradation of emerging pharmaceutical contaminants</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2019-05-05</date><risdate>2019</risdate><volume>244</volume><spage>367</spage><epage>384</epage><pages>367-384</pages><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>Fusion thermolysis followed by low-temperature pyrolysis of baking ingredients macronized magnetic CNTs into macroscale 3D hierarchical porous heteroatom-doped carbofoams, showing enriched accommodation of graphitized interfaces for improved catalytic power and material durability in the oxidative abatement of various recalcitrant pharmaceutical contaminants.
[Display omitted]
•Baking ingredients fused magnetic nanotubes into 3D porous foams via mild pyrolysis.•Structured porosity and heteroatom doping boost catalytic power toward activating PMS.•Highly active and stable catalyst under various process conditions and water matrices.•Dual-mode activation mechanism of PMS and degradation pathways of PhACs are proposed.•Multicycle reuse with facile magnetic-driven coordination, separation, and recovery.
This article reports on the macronization of self-supported 3D CNT foam inter-connected by heteroatom-enriched porous shells derived from renewable baking ingredients via mild pyrolysis. The synthesized hybrids enabled disintegrating peroxymonosulfate (PMS) into reactive oxidants (sulfate radicals, hydroxyl radicals, and singlet oxygen) for the degradation of atenolol, iopamidol, metformin, trimethoprim, and phenol in water. Hierarchically structured nitrogen- and oxygen-doping significantly enhanced adsorptive and catalytic performance whereas the magnetic 3D framework promoted mass transport, multicycle use and induced synergetic effects via the Me-Nx-C interfaces. The samples were highly efficient for degradative removal of model pollutants at low catalyst and PMS dose. The catalyst loading, PMS dose, contact time, and temperature positively influenced the removal potency while pH and water matrix governed the rates differently. Spin trapping, oxidant quenching and solvent isotope effect study coupled with liquid chromatography and Fourier transform ion cyclotron resonance mass spectrometry analysis suggested the footprints of transformation products via a dual-mode (radical and non-radical) activation of PMS. This durable, magnetic carbofoam might be a promising catalyst for the oxidative abatement of pharmaceutical micropollutants from contaminated waters.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2018.11.064</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-3373 |
ispartof | Applied catalysis. B, Environmental, 2019-05, Vol.244, p.367-384 |
issn | 0926-3373 1873-3883 |
language | eng |
recordid | cdi_proquest_journals_2199232542 |
source | Elsevier ScienceDirect Journals |
subjects | Adsorptivity Atenolol Baking Carbon nanotubes foam Catalysis Catalysts Contaminants Cyclotron resonance Degradation Disintegration Emerging pharmaceutical pollutants Fourier transforms Free radicals Heteroatom doping Hybrids Hydroxyl radicals Interfaces Ions Isotope effect Liquid chromatography Mass spectrometry Mass spectroscopy Mass transport Metformin Oxidants Oxidizing agents Oxygen Peroxymonosulfate-mediated degradation Pharmaceuticals Phenols Pollutant removal Pollutants Pyrolysis Singlet oxygen Sulfates Transformation products Trimethoprim Water temperature |
title | Gingerbread ingredient-derived carbons-assembled CNT foam for the efficient peroxymonosulfate-mediated degradation of emerging pharmaceutical contaminants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gingerbread%20ingredient-derived%20carbons-assembled%20CNT%20foam%20for%20the%20efficient%20peroxymonosulfate-mediated%20degradation%20of%20emerging%20pharmaceutical%20contaminants&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Minh,%20Tam%20Do&rft.date=2019-05-05&rft.volume=244&rft.spage=367&rft.epage=384&rft.pages=367-384&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2018.11.064&rft_dat=%3Cproquest_cross%3E2199232542%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199232542&rft_id=info:pmid/&rft_els_id=S0926337318311226&rfr_iscdi=true |