General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium–magnesium–aluminosilicate at 1300 oC

[Display omitted] •CAMS corrosion of RE2SiO5 is linearly related to RE ionic radius. This stands for an efficient materials selection for its EBC applications.•Smaller RE leads to the decreased reactivity and this brings out shallower recession layer and better resistance to CMAS.•Optical basicity d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Corrosion science 2019-03, Vol.148, p.281-292
Hauptverfasser: Tian, Zhilin, Zhang, Jie, Zheng, Liya, Hu, Wanpeng, Ren, Xiaomin, Lei, Yiming, Wang, Jingyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 292
container_issue
container_start_page 281
container_title Corrosion science
container_volume 148
creator Tian, Zhilin
Zhang, Jie
Zheng, Liya
Hu, Wanpeng
Ren, Xiaomin
Lei, Yiming
Wang, Jingyang
description [Display omitted] •CAMS corrosion of RE2SiO5 is linearly related to RE ionic radius. This stands for an efficient materials selection for its EBC applications.•Smaller RE leads to the decreased reactivity and this brings out shallower recession layer and better resistance to CMAS.•Optical basicity difference between RE2SiO5 and CMAS can be used as an indicator for predicting their reactivity. Thermochemical reactions between rare earth (RE) monosilicates (RE2SiO5) and molten calcium-magnesium-aluminosilicate (CMAS) at 1300 °C were investigated. Some RE2SiO5 (RE = Tb, Dy, and Ho) dissolve readily into CMAS melts and thereby, crystalline Ca2RE8(SiO4)6O2 reprecipitate. Other RE2SiO5 (RE = Tm, Yb, and Lu) resist CMAS attack, and a continuous layer of Ca2RE8(SiO4)6O2 establishes at the interface. The recession of RE2SiO5 is related to RE ionic radius. RE2SiO5 with small RE ionic radius exhibits good CMAS corrosion resistance due to its low reactivity with CMAS. This result is consistent with the same trend of difference in the optical basicity of RE2SiO5/CMAS.
doi_str_mv 10.1016/j.corsci.2018.12.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199231237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X18309326</els_id><sourcerecordid>2199231237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2457-65911ada42329b06ed2f7289ec5170b1bbac5c893bca91e754de1884c18300fe3</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVpoNskb5CDoGe7M7K9ti6FsLRpIZBLCr2JsTzOarGtjaQt5NZ3SJ8wTxIlW-gtpxlmvn9-5hfiAqFEwPXnXWl9iNaVCrArUZVQqXdihV2rC6j1-r1YASAUuup-fRAfY9wBQGZhJf5e8cKBJpkCL4P0i0xblvstRZYxUe8mlx4k5VW2CD66TASOLu8Wy9KPMlBgyRTSVs5-ycTkLCWOMvk8mBIv0tJk3WF--vM4092S1a89TYfZ_RdIShIrAOk3Z-JkpCny-b96Kn5--3q7-V5c31z92FxeF1bVTVusG41IA9WqUrqHNQ9qbFWn2TbYQo99T7axna56Sxq5beqBsetqi132Gbk6FZ-Od_fB3x84JrPzh7BkS6NQa1WhqtpM1UfK5v9j4NHsg5spPBgE85K_2Zlj_uYlf4PK5Pyz7MtRxvmD346DyQTn0AYX2CYzePf2gWd8gZTD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199231237</pqid></control><display><type>article</type><title>General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium–magnesium–aluminosilicate at 1300 oC</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Tian, Zhilin ; Zhang, Jie ; Zheng, Liya ; Hu, Wanpeng ; Ren, Xiaomin ; Lei, Yiming ; Wang, Jingyang</creator><creatorcontrib>Tian, Zhilin ; Zhang, Jie ; Zheng, Liya ; Hu, Wanpeng ; Ren, Xiaomin ; Lei, Yiming ; Wang, Jingyang</creatorcontrib><description>[Display omitted] •CAMS corrosion of RE2SiO5 is linearly related to RE ionic radius. This stands for an efficient materials selection for its EBC applications.•Smaller RE leads to the decreased reactivity and this brings out shallower recession layer and better resistance to CMAS.•Optical basicity difference between RE2SiO5 and CMAS can be used as an indicator for predicting their reactivity. Thermochemical reactions between rare earth (RE) monosilicates (RE2SiO5) and molten calcium-magnesium-aluminosilicate (CMAS) at 1300 °C were investigated. Some RE2SiO5 (RE = Tb, Dy, and Ho) dissolve readily into CMAS melts and thereby, crystalline Ca2RE8(SiO4)6O2 reprecipitate. Other RE2SiO5 (RE = Tm, Yb, and Lu) resist CMAS attack, and a continuous layer of Ca2RE8(SiO4)6O2 establishes at the interface. The recession of RE2SiO5 is related to RE ionic radius. RE2SiO5 with small RE ionic radius exhibits good CMAS corrosion resistance due to its low reactivity with CMAS. This result is consistent with the same trend of difference in the optical basicity of RE2SiO5/CMAS.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2018.12.032</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Aluminosilicates ; Aluminum silicates ; Calcium ; Calcium–magnesium–aluminosilicate ; Corrosion ; Corrosion resistance ; Environmental barrier coating materials ; Magnesium ; Melts (crystal growth) ; Optical basicity ; Phase stability ; Rare earth silicates ; Recession</subject><ispartof>Corrosion science, 2019-03, Vol.148, p.281-292</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2457-65911ada42329b06ed2f7289ec5170b1bbac5c893bca91e754de1884c18300fe3</citedby><cites>FETCH-LOGICAL-c2457-65911ada42329b06ed2f7289ec5170b1bbac5c893bca91e754de1884c18300fe3</cites><orcidid>0000-0002-4748-8512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.corsci.2018.12.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Tian, Zhilin</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Zheng, Liya</creatorcontrib><creatorcontrib>Hu, Wanpeng</creatorcontrib><creatorcontrib>Ren, Xiaomin</creatorcontrib><creatorcontrib>Lei, Yiming</creatorcontrib><creatorcontrib>Wang, Jingyang</creatorcontrib><title>General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium–magnesium–aluminosilicate at 1300 oC</title><title>Corrosion science</title><description>[Display omitted] •CAMS corrosion of RE2SiO5 is linearly related to RE ionic radius. This stands for an efficient materials selection for its EBC applications.•Smaller RE leads to the decreased reactivity and this brings out shallower recession layer and better resistance to CMAS.•Optical basicity difference between RE2SiO5 and CMAS can be used as an indicator for predicting their reactivity. Thermochemical reactions between rare earth (RE) monosilicates (RE2SiO5) and molten calcium-magnesium-aluminosilicate (CMAS) at 1300 °C were investigated. Some RE2SiO5 (RE = Tb, Dy, and Ho) dissolve readily into CMAS melts and thereby, crystalline Ca2RE8(SiO4)6O2 reprecipitate. Other RE2SiO5 (RE = Tm, Yb, and Lu) resist CMAS attack, and a continuous layer of Ca2RE8(SiO4)6O2 establishes at the interface. The recession of RE2SiO5 is related to RE ionic radius. RE2SiO5 with small RE ionic radius exhibits good CMAS corrosion resistance due to its low reactivity with CMAS. This result is consistent with the same trend of difference in the optical basicity of RE2SiO5/CMAS.</description><subject>Aluminosilicates</subject><subject>Aluminum silicates</subject><subject>Calcium</subject><subject>Calcium–magnesium–aluminosilicate</subject><subject>Corrosion</subject><subject>Corrosion resistance</subject><subject>Environmental barrier coating materials</subject><subject>Magnesium</subject><subject>Melts (crystal growth)</subject><subject>Optical basicity</subject><subject>Phase stability</subject><subject>Rare earth silicates</subject><subject>Recession</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVpoNskb5CDoGe7M7K9ti6FsLRpIZBLCr2JsTzOarGtjaQt5NZ3SJ8wTxIlW-gtpxlmvn9-5hfiAqFEwPXnXWl9iNaVCrArUZVQqXdihV2rC6j1-r1YASAUuup-fRAfY9wBQGZhJf5e8cKBJpkCL4P0i0xblvstRZYxUe8mlx4k5VW2CD66TASOLu8Wy9KPMlBgyRTSVs5-ycTkLCWOMvk8mBIv0tJk3WF--vM4092S1a89TYfZ_RdIShIrAOk3Z-JkpCny-b96Kn5--3q7-V5c31z92FxeF1bVTVusG41IA9WqUrqHNQ9qbFWn2TbYQo99T7axna56Sxq5beqBsetqi132Gbk6FZ-Od_fB3x84JrPzh7BkS6NQa1WhqtpM1UfK5v9j4NHsg5spPBgE85K_2Zlj_uYlf4PK5Pyz7MtRxvmD346DyQTn0AYX2CYzePf2gWd8gZTD</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Tian, Zhilin</creator><creator>Zhang, Jie</creator><creator>Zheng, Liya</creator><creator>Hu, Wanpeng</creator><creator>Ren, Xiaomin</creator><creator>Lei, Yiming</creator><creator>Wang, Jingyang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4748-8512</orcidid></search><sort><creationdate>201903</creationdate><title>General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium–magnesium–aluminosilicate at 1300 oC</title><author>Tian, Zhilin ; Zhang, Jie ; Zheng, Liya ; Hu, Wanpeng ; Ren, Xiaomin ; Lei, Yiming ; Wang, Jingyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2457-65911ada42329b06ed2f7289ec5170b1bbac5c893bca91e754de1884c18300fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminosilicates</topic><topic>Aluminum silicates</topic><topic>Calcium</topic><topic>Calcium–magnesium–aluminosilicate</topic><topic>Corrosion</topic><topic>Corrosion resistance</topic><topic>Environmental barrier coating materials</topic><topic>Magnesium</topic><topic>Melts (crystal growth)</topic><topic>Optical basicity</topic><topic>Phase stability</topic><topic>Rare earth silicates</topic><topic>Recession</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Zhilin</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Zheng, Liya</creatorcontrib><creatorcontrib>Hu, Wanpeng</creatorcontrib><creatorcontrib>Ren, Xiaomin</creatorcontrib><creatorcontrib>Lei, Yiming</creatorcontrib><creatorcontrib>Wang, Jingyang</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Zhilin</au><au>Zhang, Jie</au><au>Zheng, Liya</au><au>Hu, Wanpeng</au><au>Ren, Xiaomin</au><au>Lei, Yiming</au><au>Wang, Jingyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium–magnesium–aluminosilicate at 1300 oC</atitle><jtitle>Corrosion science</jtitle><date>2019-03</date><risdate>2019</risdate><volume>148</volume><spage>281</spage><epage>292</epage><pages>281-292</pages><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>[Display omitted] •CAMS corrosion of RE2SiO5 is linearly related to RE ionic radius. This stands for an efficient materials selection for its EBC applications.•Smaller RE leads to the decreased reactivity and this brings out shallower recession layer and better resistance to CMAS.•Optical basicity difference between RE2SiO5 and CMAS can be used as an indicator for predicting their reactivity. Thermochemical reactions between rare earth (RE) monosilicates (RE2SiO5) and molten calcium-magnesium-aluminosilicate (CMAS) at 1300 °C were investigated. Some RE2SiO5 (RE = Tb, Dy, and Ho) dissolve readily into CMAS melts and thereby, crystalline Ca2RE8(SiO4)6O2 reprecipitate. Other RE2SiO5 (RE = Tm, Yb, and Lu) resist CMAS attack, and a continuous layer of Ca2RE8(SiO4)6O2 establishes at the interface. The recession of RE2SiO5 is related to RE ionic radius. RE2SiO5 with small RE ionic radius exhibits good CMAS corrosion resistance due to its low reactivity with CMAS. This result is consistent with the same trend of difference in the optical basicity of RE2SiO5/CMAS.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2018.12.032</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4748-8512</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-938X
ispartof Corrosion science, 2019-03, Vol.148, p.281-292
issn 0010-938X
1879-0496
language eng
recordid cdi_proquest_journals_2199231237
source ScienceDirect Journals (5 years ago - present)
subjects Aluminosilicates
Aluminum silicates
Calcium
Calcium–magnesium–aluminosilicate
Corrosion
Corrosion resistance
Environmental barrier coating materials
Magnesium
Melts (crystal growth)
Optical basicity
Phase stability
Rare earth silicates
Recession
title General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium–magnesium–aluminosilicate at 1300 oC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20trend%20on%20the%20phase%20stability%20and%20corrosion%20resistance%20of%20rare%20earth%20monosilicates%20to%20molten%20calcium%E2%80%93magnesium%E2%80%93aluminosilicate%20at%201300%20oC&rft.jtitle=Corrosion%20science&rft.au=Tian,%20Zhilin&rft.date=2019-03&rft.volume=148&rft.spage=281&rft.epage=292&rft.pages=281-292&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2018.12.032&rft_dat=%3Cproquest_cross%3E2199231237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199231237&rft_id=info:pmid/&rft_els_id=S0010938X18309326&rfr_iscdi=true