General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium–magnesium–aluminosilicate at 1300 oC
[Display omitted] •CAMS corrosion of RE2SiO5 is linearly related to RE ionic radius. This stands for an efficient materials selection for its EBC applications.•Smaller RE leads to the decreased reactivity and this brings out shallower recession layer and better resistance to CMAS.•Optical basicity d...
Gespeichert in:
Veröffentlicht in: | Corrosion science 2019-03, Vol.148, p.281-292 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 292 |
---|---|
container_issue | |
container_start_page | 281 |
container_title | Corrosion science |
container_volume | 148 |
creator | Tian, Zhilin Zhang, Jie Zheng, Liya Hu, Wanpeng Ren, Xiaomin Lei, Yiming Wang, Jingyang |
description | [Display omitted]
•CAMS corrosion of RE2SiO5 is linearly related to RE ionic radius. This stands for an efficient materials selection for its EBC applications.•Smaller RE leads to the decreased reactivity and this brings out shallower recession layer and better resistance to CMAS.•Optical basicity difference between RE2SiO5 and CMAS can be used as an indicator for predicting their reactivity.
Thermochemical reactions between rare earth (RE) monosilicates (RE2SiO5) and molten calcium-magnesium-aluminosilicate (CMAS) at 1300 °C were investigated. Some RE2SiO5 (RE = Tb, Dy, and Ho) dissolve readily into CMAS melts and thereby, crystalline Ca2RE8(SiO4)6O2 reprecipitate. Other RE2SiO5 (RE = Tm, Yb, and Lu) resist CMAS attack, and a continuous layer of Ca2RE8(SiO4)6O2 establishes at the interface. The recession of RE2SiO5 is related to RE ionic radius. RE2SiO5 with small RE ionic radius exhibits good CMAS corrosion resistance due to its low reactivity with CMAS. This result is consistent with the same trend of difference in the optical basicity of RE2SiO5/CMAS. |
doi_str_mv | 10.1016/j.corsci.2018.12.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199231237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X18309326</els_id><sourcerecordid>2199231237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2457-65911ada42329b06ed2f7289ec5170b1bbac5c893bca91e754de1884c18300fe3</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVpoNskb5CDoGe7M7K9ti6FsLRpIZBLCr2JsTzOarGtjaQt5NZ3SJ8wTxIlW-gtpxlmvn9-5hfiAqFEwPXnXWl9iNaVCrArUZVQqXdihV2rC6j1-r1YASAUuup-fRAfY9wBQGZhJf5e8cKBJpkCL4P0i0xblvstRZYxUe8mlx4k5VW2CD66TASOLu8Wy9KPMlBgyRTSVs5-ycTkLCWOMvk8mBIv0tJk3WF--vM4092S1a89TYfZ_RdIShIrAOk3Z-JkpCny-b96Kn5--3q7-V5c31z92FxeF1bVTVusG41IA9WqUrqHNQ9qbFWn2TbYQo99T7axna56Sxq5beqBsetqi132Gbk6FZ-Od_fB3x84JrPzh7BkS6NQa1WhqtpM1UfK5v9j4NHsg5spPBgE85K_2Zlj_uYlf4PK5Pyz7MtRxvmD346DyQTn0AYX2CYzePf2gWd8gZTD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199231237</pqid></control><display><type>article</type><title>General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium–magnesium–aluminosilicate at 1300 oC</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Tian, Zhilin ; Zhang, Jie ; Zheng, Liya ; Hu, Wanpeng ; Ren, Xiaomin ; Lei, Yiming ; Wang, Jingyang</creator><creatorcontrib>Tian, Zhilin ; Zhang, Jie ; Zheng, Liya ; Hu, Wanpeng ; Ren, Xiaomin ; Lei, Yiming ; Wang, Jingyang</creatorcontrib><description>[Display omitted]
•CAMS corrosion of RE2SiO5 is linearly related to RE ionic radius. This stands for an efficient materials selection for its EBC applications.•Smaller RE leads to the decreased reactivity and this brings out shallower recession layer and better resistance to CMAS.•Optical basicity difference between RE2SiO5 and CMAS can be used as an indicator for predicting their reactivity.
Thermochemical reactions between rare earth (RE) monosilicates (RE2SiO5) and molten calcium-magnesium-aluminosilicate (CMAS) at 1300 °C were investigated. Some RE2SiO5 (RE = Tb, Dy, and Ho) dissolve readily into CMAS melts and thereby, crystalline Ca2RE8(SiO4)6O2 reprecipitate. Other RE2SiO5 (RE = Tm, Yb, and Lu) resist CMAS attack, and a continuous layer of Ca2RE8(SiO4)6O2 establishes at the interface. The recession of RE2SiO5 is related to RE ionic radius. RE2SiO5 with small RE ionic radius exhibits good CMAS corrosion resistance due to its low reactivity with CMAS. This result is consistent with the same trend of difference in the optical basicity of RE2SiO5/CMAS.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2018.12.032</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Aluminosilicates ; Aluminum silicates ; Calcium ; Calcium–magnesium–aluminosilicate ; Corrosion ; Corrosion resistance ; Environmental barrier coating materials ; Magnesium ; Melts (crystal growth) ; Optical basicity ; Phase stability ; Rare earth silicates ; Recession</subject><ispartof>Corrosion science, 2019-03, Vol.148, p.281-292</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2457-65911ada42329b06ed2f7289ec5170b1bbac5c893bca91e754de1884c18300fe3</citedby><cites>FETCH-LOGICAL-c2457-65911ada42329b06ed2f7289ec5170b1bbac5c893bca91e754de1884c18300fe3</cites><orcidid>0000-0002-4748-8512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.corsci.2018.12.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Tian, Zhilin</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Zheng, Liya</creatorcontrib><creatorcontrib>Hu, Wanpeng</creatorcontrib><creatorcontrib>Ren, Xiaomin</creatorcontrib><creatorcontrib>Lei, Yiming</creatorcontrib><creatorcontrib>Wang, Jingyang</creatorcontrib><title>General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium–magnesium–aluminosilicate at 1300 oC</title><title>Corrosion science</title><description>[Display omitted]
•CAMS corrosion of RE2SiO5 is linearly related to RE ionic radius. This stands for an efficient materials selection for its EBC applications.•Smaller RE leads to the decreased reactivity and this brings out shallower recession layer and better resistance to CMAS.•Optical basicity difference between RE2SiO5 and CMAS can be used as an indicator for predicting their reactivity.
Thermochemical reactions between rare earth (RE) monosilicates (RE2SiO5) and molten calcium-magnesium-aluminosilicate (CMAS) at 1300 °C were investigated. Some RE2SiO5 (RE = Tb, Dy, and Ho) dissolve readily into CMAS melts and thereby, crystalline Ca2RE8(SiO4)6O2 reprecipitate. Other RE2SiO5 (RE = Tm, Yb, and Lu) resist CMAS attack, and a continuous layer of Ca2RE8(SiO4)6O2 establishes at the interface. The recession of RE2SiO5 is related to RE ionic radius. RE2SiO5 with small RE ionic radius exhibits good CMAS corrosion resistance due to its low reactivity with CMAS. This result is consistent with the same trend of difference in the optical basicity of RE2SiO5/CMAS.</description><subject>Aluminosilicates</subject><subject>Aluminum silicates</subject><subject>Calcium</subject><subject>Calcium–magnesium–aluminosilicate</subject><subject>Corrosion</subject><subject>Corrosion resistance</subject><subject>Environmental barrier coating materials</subject><subject>Magnesium</subject><subject>Melts (crystal growth)</subject><subject>Optical basicity</subject><subject>Phase stability</subject><subject>Rare earth silicates</subject><subject>Recession</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVpoNskb5CDoGe7M7K9ti6FsLRpIZBLCr2JsTzOarGtjaQt5NZ3SJ8wTxIlW-gtpxlmvn9-5hfiAqFEwPXnXWl9iNaVCrArUZVQqXdihV2rC6j1-r1YASAUuup-fRAfY9wBQGZhJf5e8cKBJpkCL4P0i0xblvstRZYxUe8mlx4k5VW2CD66TASOLu8Wy9KPMlBgyRTSVs5-ycTkLCWOMvk8mBIv0tJk3WF--vM4092S1a89TYfZ_RdIShIrAOk3Z-JkpCny-b96Kn5--3q7-V5c31z92FxeF1bVTVusG41IA9WqUrqHNQ9qbFWn2TbYQo99T7axna56Sxq5beqBsetqi132Gbk6FZ-Od_fB3x84JrPzh7BkS6NQa1WhqtpM1UfK5v9j4NHsg5spPBgE85K_2Zlj_uYlf4PK5Pyz7MtRxvmD346DyQTn0AYX2CYzePf2gWd8gZTD</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Tian, Zhilin</creator><creator>Zhang, Jie</creator><creator>Zheng, Liya</creator><creator>Hu, Wanpeng</creator><creator>Ren, Xiaomin</creator><creator>Lei, Yiming</creator><creator>Wang, Jingyang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4748-8512</orcidid></search><sort><creationdate>201903</creationdate><title>General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium–magnesium–aluminosilicate at 1300 oC</title><author>Tian, Zhilin ; Zhang, Jie ; Zheng, Liya ; Hu, Wanpeng ; Ren, Xiaomin ; Lei, Yiming ; Wang, Jingyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2457-65911ada42329b06ed2f7289ec5170b1bbac5c893bca91e754de1884c18300fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminosilicates</topic><topic>Aluminum silicates</topic><topic>Calcium</topic><topic>Calcium–magnesium–aluminosilicate</topic><topic>Corrosion</topic><topic>Corrosion resistance</topic><topic>Environmental barrier coating materials</topic><topic>Magnesium</topic><topic>Melts (crystal growth)</topic><topic>Optical basicity</topic><topic>Phase stability</topic><topic>Rare earth silicates</topic><topic>Recession</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Zhilin</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Zheng, Liya</creatorcontrib><creatorcontrib>Hu, Wanpeng</creatorcontrib><creatorcontrib>Ren, Xiaomin</creatorcontrib><creatorcontrib>Lei, Yiming</creatorcontrib><creatorcontrib>Wang, Jingyang</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Zhilin</au><au>Zhang, Jie</au><au>Zheng, Liya</au><au>Hu, Wanpeng</au><au>Ren, Xiaomin</au><au>Lei, Yiming</au><au>Wang, Jingyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium–magnesium–aluminosilicate at 1300 oC</atitle><jtitle>Corrosion science</jtitle><date>2019-03</date><risdate>2019</risdate><volume>148</volume><spage>281</spage><epage>292</epage><pages>281-292</pages><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>[Display omitted]
•CAMS corrosion of RE2SiO5 is linearly related to RE ionic radius. This stands for an efficient materials selection for its EBC applications.•Smaller RE leads to the decreased reactivity and this brings out shallower recession layer and better resistance to CMAS.•Optical basicity difference between RE2SiO5 and CMAS can be used as an indicator for predicting their reactivity.
Thermochemical reactions between rare earth (RE) monosilicates (RE2SiO5) and molten calcium-magnesium-aluminosilicate (CMAS) at 1300 °C were investigated. Some RE2SiO5 (RE = Tb, Dy, and Ho) dissolve readily into CMAS melts and thereby, crystalline Ca2RE8(SiO4)6O2 reprecipitate. Other RE2SiO5 (RE = Tm, Yb, and Lu) resist CMAS attack, and a continuous layer of Ca2RE8(SiO4)6O2 establishes at the interface. The recession of RE2SiO5 is related to RE ionic radius. RE2SiO5 with small RE ionic radius exhibits good CMAS corrosion resistance due to its low reactivity with CMAS. This result is consistent with the same trend of difference in the optical basicity of RE2SiO5/CMAS.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2018.12.032</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4748-8512</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-938X |
ispartof | Corrosion science, 2019-03, Vol.148, p.281-292 |
issn | 0010-938X 1879-0496 |
language | eng |
recordid | cdi_proquest_journals_2199231237 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Aluminosilicates Aluminum silicates Calcium Calcium–magnesium–aluminosilicate Corrosion Corrosion resistance Environmental barrier coating materials Magnesium Melts (crystal growth) Optical basicity Phase stability Rare earth silicates Recession |
title | General trend on the phase stability and corrosion resistance of rare earth monosilicates to molten calcium–magnesium–aluminosilicate at 1300 oC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20trend%20on%20the%20phase%20stability%20and%20corrosion%20resistance%20of%20rare%20earth%20monosilicates%20to%20molten%20calcium%E2%80%93magnesium%E2%80%93aluminosilicate%20at%201300%20oC&rft.jtitle=Corrosion%20science&rft.au=Tian,%20Zhilin&rft.date=2019-03&rft.volume=148&rft.spage=281&rft.epage=292&rft.pages=281-292&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2018.12.032&rft_dat=%3Cproquest_cross%3E2199231237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199231237&rft_id=info:pmid/&rft_els_id=S0010938X18309326&rfr_iscdi=true |