Designing and Validating Parallel Wire Suspension Bridge Wire Strands for Neutron Diffraction Stress Mapping

Suspension-bridge cables are constructed from strands of galvanized steel wire. They are failure-critical structural members, so a fundamental understanding of their mechanics is imminently important in quantifying suspension bridge safety. The load-carrying capabilities of such strands after local...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2017-08, Vol.905, p.123-130
Hauptverfasser: Brügger, Adrian, Betti, Raimondo, Noyan, İsmail Cevdet, Lee, Seung Yub
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130
container_issue
container_start_page 123
container_title Materials science forum
container_volume 905
creator Brügger, Adrian
Betti, Raimondo
Noyan, İsmail Cevdet
Lee, Seung Yub
description Suspension-bridge cables are constructed from strands of galvanized steel wire. They are failure-critical structural members, so a fundamental understanding of their mechanics is imminently important in quantifying suspension bridge safety. The load-carrying capabilities of such strands after local wire failures have been the subject of many theoretical studies utilizing analytical equations and finite-element analysis. Little experimental data, however, exists to validate these models.Over the past five years we have developed a methodology for measuring stress/strain transfer within parallel wire strands of suspension bridge cables using neutron diffraction [1,2]. In this paper we describe the design and verification of parallel cable strands used in our studies. We describe the neutron diffraction strain measurements performed on standard 7-wire and expanded 19-wire models in various configurations at both the Los Alamos National Laboratory Spectrometer for Materials Research at Temperature and Stress (LANL SMARTS) and at the Oak Ridge National Laboratory VULCAN Engineering Materials Diffractometer (ORNL VULCAN). Particular attention is placed on the challenges of aligning and measuring multibody systems with high strain gradients at body-to-body contact points.
doi_str_mv 10.4028/www.scientific.net/MSF.905.123
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199231216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199231216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2713-7f2e1bf8b69f5d51a56fcf92af97604c57eb0082836571d4ed9b8fa7a22370ad3</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMoOKf_oSB41y5Jm6S9EXVzKmwqzI_LkKbJzKhtTVKG_96UDXbr1eGc857nwAPAFYJJBnE-2W63iZNGNd5oI5NG-clyNU8KSBKE0yMwQpTiuGAEH4MRxITEJGP0FJw5t4EwRTmiI1DPlDPrxjTrSDRV9CFqUwk_tK_CirpWdfRprIpWvetU40zbRHfWVGu1H3sbzlykWxs9q97bsJ8Zra2QfsiGvXIuWoquC8xzcKJF7dTFvo7B-_z-bfoYL14enqa3i1hihtKYaaxQqfOSFppUBAlCtdQFFrpgFGaSMFVCmOM8pYShKlNVUeZaMIFxyqCo0jG43HE72_70ynm-aXvbhJcco6LAKcKIhtT1LiVt65xVmnfWfAv7yxHkg2EeDPODYR4M82CYB8M8GA6Amx1gkOC8kl-HP_9E_AGdJ46M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199231216</pqid></control><display><type>article</type><title>Designing and Validating Parallel Wire Suspension Bridge Wire Strands for Neutron Diffraction Stress Mapping</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>Scientific.net Journals</source><creator>Brügger, Adrian ; Betti, Raimondo ; Noyan, İsmail Cevdet ; Lee, Seung Yub</creator><creatorcontrib>Brügger, Adrian ; Betti, Raimondo ; Noyan, İsmail Cevdet ; Lee, Seung Yub</creatorcontrib><description>Suspension-bridge cables are constructed from strands of galvanized steel wire. They are failure-critical structural members, so a fundamental understanding of their mechanics is imminently important in quantifying suspension bridge safety. The load-carrying capabilities of such strands after local wire failures have been the subject of many theoretical studies utilizing analytical equations and finite-element analysis. Little experimental data, however, exists to validate these models.Over the past five years we have developed a methodology for measuring stress/strain transfer within parallel wire strands of suspension bridge cables using neutron diffraction [1,2]. In this paper we describe the design and verification of parallel cable strands used in our studies. We describe the neutron diffraction strain measurements performed on standard 7-wire and expanded 19-wire models in various configurations at both the Los Alamos National Laboratory Spectrometer for Materials Research at Temperature and Stress (LANL SMARTS) and at the Oak Ridge National Laboratory VULCAN Engineering Materials Diffractometer (ORNL VULCAN). Particular attention is placed on the challenges of aligning and measuring multibody systems with high strain gradients at body-to-body contact points.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.905.123</identifier><language>eng</language><publisher>Pfaffikon: Trans Tech Publications Ltd</publisher><subject>Bridge construction ; Bridge failure ; Cables ; Finite element method ; Galvanized steel ; Galvanized steels ; Galvanizing ; Laboratories ; Mapping ; Multibody systems ; Neutron diffraction ; Neutrons ; Research facilities ; Steel wire ; Strain ; Strands ; Structural members ; Suspension bridges</subject><ispartof>Materials science forum, 2017-08, Vol.905, p.123-130</ispartof><rights>2017 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Aug 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2713-7f2e1bf8b69f5d51a56fcf92af97604c57eb0082836571d4ed9b8fa7a22370ad3</citedby><orcidid>0000-0001-9164-0385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4004?width=600</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2199231216?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21370,21371,23237,27905,27906,33511,33684,34295,43640,43768,44048</link.rule.ids></links><search><creatorcontrib>Brügger, Adrian</creatorcontrib><creatorcontrib>Betti, Raimondo</creatorcontrib><creatorcontrib>Noyan, İsmail Cevdet</creatorcontrib><creatorcontrib>Lee, Seung Yub</creatorcontrib><title>Designing and Validating Parallel Wire Suspension Bridge Wire Strands for Neutron Diffraction Stress Mapping</title><title>Materials science forum</title><description>Suspension-bridge cables are constructed from strands of galvanized steel wire. They are failure-critical structural members, so a fundamental understanding of their mechanics is imminently important in quantifying suspension bridge safety. The load-carrying capabilities of such strands after local wire failures have been the subject of many theoretical studies utilizing analytical equations and finite-element analysis. Little experimental data, however, exists to validate these models.Over the past five years we have developed a methodology for measuring stress/strain transfer within parallel wire strands of suspension bridge cables using neutron diffraction [1,2]. In this paper we describe the design and verification of parallel cable strands used in our studies. We describe the neutron diffraction strain measurements performed on standard 7-wire and expanded 19-wire models in various configurations at both the Los Alamos National Laboratory Spectrometer for Materials Research at Temperature and Stress (LANL SMARTS) and at the Oak Ridge National Laboratory VULCAN Engineering Materials Diffractometer (ORNL VULCAN). Particular attention is placed on the challenges of aligning and measuring multibody systems with high strain gradients at body-to-body contact points.</description><subject>Bridge construction</subject><subject>Bridge failure</subject><subject>Cables</subject><subject>Finite element method</subject><subject>Galvanized steel</subject><subject>Galvanized steels</subject><subject>Galvanizing</subject><subject>Laboratories</subject><subject>Mapping</subject><subject>Multibody systems</subject><subject>Neutron diffraction</subject><subject>Neutrons</subject><subject>Research facilities</subject><subject>Steel wire</subject><subject>Strain</subject><subject>Strands</subject><subject>Structural members</subject><subject>Suspension bridges</subject><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkF1LwzAUhoMoOKf_oSB41y5Jm6S9EXVzKmwqzI_LkKbJzKhtTVKG_96UDXbr1eGc857nwAPAFYJJBnE-2W63iZNGNd5oI5NG-clyNU8KSBKE0yMwQpTiuGAEH4MRxITEJGP0FJw5t4EwRTmiI1DPlDPrxjTrSDRV9CFqUwk_tK_CirpWdfRprIpWvetU40zbRHfWVGu1H3sbzlykWxs9q97bsJ8Zra2QfsiGvXIuWoquC8xzcKJF7dTFvo7B-_z-bfoYL14enqa3i1hihtKYaaxQqfOSFppUBAlCtdQFFrpgFGaSMFVCmOM8pYShKlNVUeZaMIFxyqCo0jG43HE72_70ynm-aXvbhJcco6LAKcKIhtT1LiVt65xVmnfWfAv7yxHkg2EeDPODYR4M82CYB8M8GA6Amx1gkOC8kl-HP_9E_AGdJ46M</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Brügger, Adrian</creator><creator>Betti, Raimondo</creator><creator>Noyan, İsmail Cevdet</creator><creator>Lee, Seung Yub</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9164-0385</orcidid></search><sort><creationdate>20170801</creationdate><title>Designing and Validating Parallel Wire Suspension Bridge Wire Strands for Neutron Diffraction Stress Mapping</title><author>Brügger, Adrian ; Betti, Raimondo ; Noyan, İsmail Cevdet ; Lee, Seung Yub</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2713-7f2e1bf8b69f5d51a56fcf92af97604c57eb0082836571d4ed9b8fa7a22370ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bridge construction</topic><topic>Bridge failure</topic><topic>Cables</topic><topic>Finite element method</topic><topic>Galvanized steel</topic><topic>Galvanized steels</topic><topic>Galvanizing</topic><topic>Laboratories</topic><topic>Mapping</topic><topic>Multibody systems</topic><topic>Neutron diffraction</topic><topic>Neutrons</topic><topic>Research facilities</topic><topic>Steel wire</topic><topic>Strain</topic><topic>Strands</topic><topic>Structural members</topic><topic>Suspension bridges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brügger, Adrian</creatorcontrib><creatorcontrib>Betti, Raimondo</creatorcontrib><creatorcontrib>Noyan, İsmail Cevdet</creatorcontrib><creatorcontrib>Lee, Seung Yub</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brügger, Adrian</au><au>Betti, Raimondo</au><au>Noyan, İsmail Cevdet</au><au>Lee, Seung Yub</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing and Validating Parallel Wire Suspension Bridge Wire Strands for Neutron Diffraction Stress Mapping</atitle><jtitle>Materials science forum</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>905</volume><spage>123</spage><epage>130</epage><pages>123-130</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>Suspension-bridge cables are constructed from strands of galvanized steel wire. They are failure-critical structural members, so a fundamental understanding of their mechanics is imminently important in quantifying suspension bridge safety. The load-carrying capabilities of such strands after local wire failures have been the subject of many theoretical studies utilizing analytical equations and finite-element analysis. Little experimental data, however, exists to validate these models.Over the past five years we have developed a methodology for measuring stress/strain transfer within parallel wire strands of suspension bridge cables using neutron diffraction [1,2]. In this paper we describe the design and verification of parallel cable strands used in our studies. We describe the neutron diffraction strain measurements performed on standard 7-wire and expanded 19-wire models in various configurations at both the Los Alamos National Laboratory Spectrometer for Materials Research at Temperature and Stress (LANL SMARTS) and at the Oak Ridge National Laboratory VULCAN Engineering Materials Diffractometer (ORNL VULCAN). Particular attention is placed on the challenges of aligning and measuring multibody systems with high strain gradients at body-to-body contact points.</abstract><cop>Pfaffikon</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.905.123</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9164-0385</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0255-5476
ispartof Materials science forum, 2017-08, Vol.905, p.123-130
issn 0255-5476
1662-9752
1662-9752
language eng
recordid cdi_proquest_journals_2199231216
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; Scientific.net Journals
subjects Bridge construction
Bridge failure
Cables
Finite element method
Galvanized steel
Galvanized steels
Galvanizing
Laboratories
Mapping
Multibody systems
Neutron diffraction
Neutrons
Research facilities
Steel wire
Strain
Strands
Structural members
Suspension bridges
title Designing and Validating Parallel Wire Suspension Bridge Wire Strands for Neutron Diffraction Stress Mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A24%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20and%20Validating%20Parallel%20Wire%20Suspension%20Bridge%20Wire%20Strands%20for%20Neutron%20Diffraction%20Stress%20Mapping&rft.jtitle=Materials%20science%20forum&rft.au=Br%C3%BCgger,%20Adrian&rft.date=2017-08-01&rft.volume=905&rft.spage=123&rft.epage=130&rft.pages=123-130&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.905.123&rft_dat=%3Cproquest_cross%3E2199231216%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199231216&rft_id=info:pmid/&rfr_iscdi=true