Approximate controllability of linearized shape-dependent operators for flow problems
We study the controllability of linearized shape-dependent operators for flow problems. The first operator is a mapping from the shape of the computational domain to the tangential wall velocity of the potential flow problem and the second operator maps to the wall shear stress of the Stokes problem...
Gespeichert in:
Veröffentlicht in: | ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2017-07, Vol.23 (3), p.751-771 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 771 |
---|---|
container_issue | 3 |
container_start_page | 751 |
container_title | ESAIM. Control, optimisation and calculus of variations |
container_volume | 23 |
creator | Leithäuser, C. Pinnau, R. Feßler, R. |
description | We study the controllability of linearized shape-dependent operators for flow problems. The first operator is a mapping from the shape of the computational domain to the tangential wall velocity of the potential flow problem and the second operator maps to the wall shear stress of the Stokes problem. We derive linearizations of these operators, provide their well-posedness and finally show approximate controllability. The controllability of the linearization shows in what directions the observable can be changed by applying infinitesimal shape deformations. |
doi_str_mv | 10.1051/cocv/2016012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199210157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199210157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-c5eb9e2f4d213fb6a81081a1d4c42a643ed8b7d0ea6bc81d5054e9681155373c3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEEqWw4wMisSXU41eSZYV4SeWxoCo7y3EmIiWNg-1Cy9fjqojVzOLoXt2TJOdAroAImBhrviaUgCRAD5IRUEkzxvL8cPeXNCsAyuPkxPsliRDjfJTMp8Pg7KZd6YCpsX1wtut01XZt2Ka2Sbu2R-3aH6xT_64HzGocsK-xD6kd0OlgnU8b69Kms99pjKo6XPnT5KjRncezvztO5rc3r9f32ez57uF6OssMIxAyI7AqkTa8psCaSuoCSAEaam441ZIzrIsqrwlqWZkCakEEx1LGGUKwnBk2Ti72ubH4c40-qKVduz5WKgplSYGAyCN1uaeMs947bNTg4mC3VUDUTpzaiVN_4iKe7fHWB9z8s9p9KJmzXKiCLBQvF_Jl9vaontgvEfVxdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199210157</pqid></control><display><type>article</type><title>Approximate controllability of linearized shape-dependent operators for flow problems</title><source>EZB Electronic Journals Library</source><creator>Leithäuser, C. ; Pinnau, R. ; Feßler, R.</creator><creatorcontrib>Leithäuser, C. ; Pinnau, R. ; Feßler, R.</creatorcontrib><description>We study the controllability of linearized shape-dependent operators for flow problems. The first operator is a mapping from the shape of the computational domain to the tangential wall velocity of the potential flow problem and the second operator maps to the wall shear stress of the Stokes problem. We derive linearizations of these operators, provide their well-posedness and finally show approximate controllability. The controllability of the linearization shows in what directions the observable can be changed by applying infinitesimal shape deformations.</description><identifier>ISSN: 1292-8119</identifier><identifier>EISSN: 1262-3377</identifier><identifier>DOI: 10.1051/cocv/2016012</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>35Q35 ; 35R30 ; 49Q10 ; 76B75 ; 93B05 ; Computational fluid dynamics ; Controllability ; Controllablility ; Deformation ; inverse problem ; Linearization ; Mapping ; Operators (mathematics) ; partial differential equation ; Potential flow ; shape derivative ; shape optimization ; shape-dependent operator ; Wall shear stresses ; Well posed problems</subject><ispartof>ESAIM. Control, optimisation and calculus of variations, 2017-07, Vol.23 (3), p.751-771</ispartof><rights>2017. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-cocv.org/articles/cocv/abs/2017/03/cocv160012-s/cocv160012-s.html .</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-c5eb9e2f4d213fb6a81081a1d4c42a643ed8b7d0ea6bc81d5054e9681155373c3</citedby><cites>FETCH-LOGICAL-c301t-c5eb9e2f4d213fb6a81081a1d4c42a643ed8b7d0ea6bc81d5054e9681155373c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Leithäuser, C.</creatorcontrib><creatorcontrib>Pinnau, R.</creatorcontrib><creatorcontrib>Feßler, R.</creatorcontrib><title>Approximate controllability of linearized shape-dependent operators for flow problems</title><title>ESAIM. Control, optimisation and calculus of variations</title><description>We study the controllability of linearized shape-dependent operators for flow problems. The first operator is a mapping from the shape of the computational domain to the tangential wall velocity of the potential flow problem and the second operator maps to the wall shear stress of the Stokes problem. We derive linearizations of these operators, provide their well-posedness and finally show approximate controllability. The controllability of the linearization shows in what directions the observable can be changed by applying infinitesimal shape deformations.</description><subject>35Q35</subject><subject>35R30</subject><subject>49Q10</subject><subject>76B75</subject><subject>93B05</subject><subject>Computational fluid dynamics</subject><subject>Controllability</subject><subject>Controllablility</subject><subject>Deformation</subject><subject>inverse problem</subject><subject>Linearization</subject><subject>Mapping</subject><subject>Operators (mathematics)</subject><subject>partial differential equation</subject><subject>Potential flow</subject><subject>shape derivative</subject><subject>shape optimization</subject><subject>shape-dependent operator</subject><subject>Wall shear stresses</subject><subject>Well posed problems</subject><issn>1292-8119</issn><issn>1262-3377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRSMEEqWw4wMisSXU41eSZYV4SeWxoCo7y3EmIiWNg-1Cy9fjqojVzOLoXt2TJOdAroAImBhrviaUgCRAD5IRUEkzxvL8cPeXNCsAyuPkxPsliRDjfJTMp8Pg7KZd6YCpsX1wtut01XZt2Ka2Sbu2R-3aH6xT_64HzGocsK-xD6kd0OlgnU8b69Kms99pjKo6XPnT5KjRncezvztO5rc3r9f32ez57uF6OssMIxAyI7AqkTa8psCaSuoCSAEaam441ZIzrIsqrwlqWZkCakEEx1LGGUKwnBk2Ti72ubH4c40-qKVduz5WKgplSYGAyCN1uaeMs947bNTg4mC3VUDUTpzaiVN_4iKe7fHWB9z8s9p9KJmzXKiCLBQvF_Jl9vaontgvEfVxdw</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Leithäuser, C.</creator><creator>Pinnau, R.</creator><creator>Feßler, R.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201707</creationdate><title>Approximate controllability of linearized shape-dependent operators for flow problems</title><author>Leithäuser, C. ; Pinnau, R. ; Feßler, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-c5eb9e2f4d213fb6a81081a1d4c42a643ed8b7d0ea6bc81d5054e9681155373c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>35Q35</topic><topic>35R30</topic><topic>49Q10</topic><topic>76B75</topic><topic>93B05</topic><topic>Computational fluid dynamics</topic><topic>Controllability</topic><topic>Controllablility</topic><topic>Deformation</topic><topic>inverse problem</topic><topic>Linearization</topic><topic>Mapping</topic><topic>Operators (mathematics)</topic><topic>partial differential equation</topic><topic>Potential flow</topic><topic>shape derivative</topic><topic>shape optimization</topic><topic>shape-dependent operator</topic><topic>Wall shear stresses</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leithäuser, C.</creatorcontrib><creatorcontrib>Pinnau, R.</creatorcontrib><creatorcontrib>Feßler, R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Control, optimisation and calculus of variations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leithäuser, C.</au><au>Pinnau, R.</au><au>Feßler, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate controllability of linearized shape-dependent operators for flow problems</atitle><jtitle>ESAIM. Control, optimisation and calculus of variations</jtitle><date>2017-07</date><risdate>2017</risdate><volume>23</volume><issue>3</issue><spage>751</spage><epage>771</epage><pages>751-771</pages><issn>1292-8119</issn><eissn>1262-3377</eissn><abstract>We study the controllability of linearized shape-dependent operators for flow problems. The first operator is a mapping from the shape of the computational domain to the tangential wall velocity of the potential flow problem and the second operator maps to the wall shear stress of the Stokes problem. We derive linearizations of these operators, provide their well-posedness and finally show approximate controllability. The controllability of the linearization shows in what directions the observable can be changed by applying infinitesimal shape deformations.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/cocv/2016012</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1292-8119 |
ispartof | ESAIM. Control, optimisation and calculus of variations, 2017-07, Vol.23 (3), p.751-771 |
issn | 1292-8119 1262-3377 |
language | eng |
recordid | cdi_proquest_journals_2199210157 |
source | EZB Electronic Journals Library |
subjects | 35Q35 35R30 49Q10 76B75 93B05 Computational fluid dynamics Controllability Controllablility Deformation inverse problem Linearization Mapping Operators (mathematics) partial differential equation Potential flow shape derivative shape optimization shape-dependent operator Wall shear stresses Well posed problems |
title | Approximate controllability of linearized shape-dependent operators for flow problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20controllability%20of%20linearized%20shape-dependent%20operators%20for%20flow%20problems&rft.jtitle=ESAIM.%20Control,%20optimisation%20and%20calculus%20of%20variations&rft.au=Leith%C3%A4user,%20C.&rft.date=2017-07&rft.volume=23&rft.issue=3&rft.spage=751&rft.epage=771&rft.pages=751-771&rft.issn=1292-8119&rft.eissn=1262-3377&rft_id=info:doi/10.1051/cocv/2016012&rft_dat=%3Cproquest_cross%3E2199210157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199210157&rft_id=info:pmid/&rfr_iscdi=true |