Approximate controllability of linearized shape-dependent operators for flow problems

We study the controllability of linearized shape-dependent operators for flow problems. The first operator is a mapping from the shape of the computational domain to the tangential wall velocity of the potential flow problem and the second operator maps to the wall shear stress of the Stokes problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2017-07, Vol.23 (3), p.751-771
Hauptverfasser: Leithäuser, C., Pinnau, R., Feßler, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 771
container_issue 3
container_start_page 751
container_title ESAIM. Control, optimisation and calculus of variations
container_volume 23
creator Leithäuser, C.
Pinnau, R.
Feßler, R.
description We study the controllability of linearized shape-dependent operators for flow problems. The first operator is a mapping from the shape of the computational domain to the tangential wall velocity of the potential flow problem and the second operator maps to the wall shear stress of the Stokes problem. We derive linearizations of these operators, provide their well-posedness and finally show approximate controllability. The controllability of the linearization shows in what directions the observable can be changed by applying infinitesimal shape deformations.
doi_str_mv 10.1051/cocv/2016012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199210157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199210157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-c5eb9e2f4d213fb6a81081a1d4c42a643ed8b7d0ea6bc81d5054e9681155373c3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEEqWw4wMisSXU41eSZYV4SeWxoCo7y3EmIiWNg-1Cy9fjqojVzOLoXt2TJOdAroAImBhrviaUgCRAD5IRUEkzxvL8cPeXNCsAyuPkxPsliRDjfJTMp8Pg7KZd6YCpsX1wtut01XZt2Ka2Sbu2R-3aH6xT_64HzGocsK-xD6kd0OlgnU8b69Kms99pjKo6XPnT5KjRncezvztO5rc3r9f32ez57uF6OssMIxAyI7AqkTa8psCaSuoCSAEaam441ZIzrIsqrwlqWZkCakEEx1LGGUKwnBk2Ti72ubH4c40-qKVduz5WKgplSYGAyCN1uaeMs947bNTg4mC3VUDUTpzaiVN_4iKe7fHWB9z8s9p9KJmzXKiCLBQvF_Jl9vaontgvEfVxdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199210157</pqid></control><display><type>article</type><title>Approximate controllability of linearized shape-dependent operators for flow problems</title><source>EZB Electronic Journals Library</source><creator>Leithäuser, C. ; Pinnau, R. ; Feßler, R.</creator><creatorcontrib>Leithäuser, C. ; Pinnau, R. ; Feßler, R.</creatorcontrib><description>We study the controllability of linearized shape-dependent operators for flow problems. The first operator is a mapping from the shape of the computational domain to the tangential wall velocity of the potential flow problem and the second operator maps to the wall shear stress of the Stokes problem. We derive linearizations of these operators, provide their well-posedness and finally show approximate controllability. The controllability of the linearization shows in what directions the observable can be changed by applying infinitesimal shape deformations.</description><identifier>ISSN: 1292-8119</identifier><identifier>EISSN: 1262-3377</identifier><identifier>DOI: 10.1051/cocv/2016012</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>35Q35 ; 35R30 ; 49Q10 ; 76B75 ; 93B05 ; Computational fluid dynamics ; Controllability ; Controllablility ; Deformation ; inverse problem ; Linearization ; Mapping ; Operators (mathematics) ; partial differential equation ; Potential flow ; shape derivative ; shape optimization ; shape-dependent operator ; Wall shear stresses ; Well posed problems</subject><ispartof>ESAIM. Control, optimisation and calculus of variations, 2017-07, Vol.23 (3), p.751-771</ispartof><rights>2017. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-cocv.org/articles/cocv/abs/2017/03/cocv160012-s/cocv160012-s.html .</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-c5eb9e2f4d213fb6a81081a1d4c42a643ed8b7d0ea6bc81d5054e9681155373c3</citedby><cites>FETCH-LOGICAL-c301t-c5eb9e2f4d213fb6a81081a1d4c42a643ed8b7d0ea6bc81d5054e9681155373c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Leithäuser, C.</creatorcontrib><creatorcontrib>Pinnau, R.</creatorcontrib><creatorcontrib>Feßler, R.</creatorcontrib><title>Approximate controllability of linearized shape-dependent operators for flow problems</title><title>ESAIM. Control, optimisation and calculus of variations</title><description>We study the controllability of linearized shape-dependent operators for flow problems. The first operator is a mapping from the shape of the computational domain to the tangential wall velocity of the potential flow problem and the second operator maps to the wall shear stress of the Stokes problem. We derive linearizations of these operators, provide their well-posedness and finally show approximate controllability. The controllability of the linearization shows in what directions the observable can be changed by applying infinitesimal shape deformations.</description><subject>35Q35</subject><subject>35R30</subject><subject>49Q10</subject><subject>76B75</subject><subject>93B05</subject><subject>Computational fluid dynamics</subject><subject>Controllability</subject><subject>Controllablility</subject><subject>Deformation</subject><subject>inverse problem</subject><subject>Linearization</subject><subject>Mapping</subject><subject>Operators (mathematics)</subject><subject>partial differential equation</subject><subject>Potential flow</subject><subject>shape derivative</subject><subject>shape optimization</subject><subject>shape-dependent operator</subject><subject>Wall shear stresses</subject><subject>Well posed problems</subject><issn>1292-8119</issn><issn>1262-3377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRSMEEqWw4wMisSXU41eSZYV4SeWxoCo7y3EmIiWNg-1Cy9fjqojVzOLoXt2TJOdAroAImBhrviaUgCRAD5IRUEkzxvL8cPeXNCsAyuPkxPsliRDjfJTMp8Pg7KZd6YCpsX1wtut01XZt2Ka2Sbu2R-3aH6xT_64HzGocsK-xD6kd0OlgnU8b69Kms99pjKo6XPnT5KjRncezvztO5rc3r9f32ez57uF6OssMIxAyI7AqkTa8psCaSuoCSAEaam441ZIzrIsqrwlqWZkCakEEx1LGGUKwnBk2Ti72ubH4c40-qKVduz5WKgplSYGAyCN1uaeMs947bNTg4mC3VUDUTpzaiVN_4iKe7fHWB9z8s9p9KJmzXKiCLBQvF_Jl9vaontgvEfVxdw</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Leithäuser, C.</creator><creator>Pinnau, R.</creator><creator>Feßler, R.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201707</creationdate><title>Approximate controllability of linearized shape-dependent operators for flow problems</title><author>Leithäuser, C. ; Pinnau, R. ; Feßler, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-c5eb9e2f4d213fb6a81081a1d4c42a643ed8b7d0ea6bc81d5054e9681155373c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>35Q35</topic><topic>35R30</topic><topic>49Q10</topic><topic>76B75</topic><topic>93B05</topic><topic>Computational fluid dynamics</topic><topic>Controllability</topic><topic>Controllablility</topic><topic>Deformation</topic><topic>inverse problem</topic><topic>Linearization</topic><topic>Mapping</topic><topic>Operators (mathematics)</topic><topic>partial differential equation</topic><topic>Potential flow</topic><topic>shape derivative</topic><topic>shape optimization</topic><topic>shape-dependent operator</topic><topic>Wall shear stresses</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leithäuser, C.</creatorcontrib><creatorcontrib>Pinnau, R.</creatorcontrib><creatorcontrib>Feßler, R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Control, optimisation and calculus of variations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leithäuser, C.</au><au>Pinnau, R.</au><au>Feßler, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate controllability of linearized shape-dependent operators for flow problems</atitle><jtitle>ESAIM. Control, optimisation and calculus of variations</jtitle><date>2017-07</date><risdate>2017</risdate><volume>23</volume><issue>3</issue><spage>751</spage><epage>771</epage><pages>751-771</pages><issn>1292-8119</issn><eissn>1262-3377</eissn><abstract>We study the controllability of linearized shape-dependent operators for flow problems. The first operator is a mapping from the shape of the computational domain to the tangential wall velocity of the potential flow problem and the second operator maps to the wall shear stress of the Stokes problem. We derive linearizations of these operators, provide their well-posedness and finally show approximate controllability. The controllability of the linearization shows in what directions the observable can be changed by applying infinitesimal shape deformations.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/cocv/2016012</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1292-8119
ispartof ESAIM. Control, optimisation and calculus of variations, 2017-07, Vol.23 (3), p.751-771
issn 1292-8119
1262-3377
language eng
recordid cdi_proquest_journals_2199210157
source EZB Electronic Journals Library
subjects 35Q35
35R30
49Q10
76B75
93B05
Computational fluid dynamics
Controllability
Controllablility
Deformation
inverse problem
Linearization
Mapping
Operators (mathematics)
partial differential equation
Potential flow
shape derivative
shape optimization
shape-dependent operator
Wall shear stresses
Well posed problems
title Approximate controllability of linearized shape-dependent operators for flow problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20controllability%20of%20linearized%20shape-dependent%20operators%20for%20flow%20problems&rft.jtitle=ESAIM.%20Control,%20optimisation%20and%20calculus%20of%20variations&rft.au=Leith%C3%A4user,%20C.&rft.date=2017-07&rft.volume=23&rft.issue=3&rft.spage=751&rft.epage=771&rft.pages=751-771&rft.issn=1292-8119&rft.eissn=1262-3377&rft_id=info:doi/10.1051/cocv/2016012&rft_dat=%3Cproquest_cross%3E2199210157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199210157&rft_id=info:pmid/&rfr_iscdi=true