Role of Asian summer monsoon subsystems in the inter-hemispheric progression of deglaciation

The responses of Asian monsoon subsystems to both hemispheric climate forcing and external orbital forcing are currently issues of vigorous debate. The Indian summer monsoon is the dominant monsoon subsystem in terms of energy flux, constituting one of Earth’s most dynamic expressions of ocean–atmos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature geoscience 2019-04, Vol.12 (4), p.290-295
Hauptverfasser: Nilsson-Kerr, K., Anand, P., Sexton, P. F., Leng, M. J., Misra, S., Clemens, S. C., Hammond, S. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 295
container_issue 4
container_start_page 290
container_title Nature geoscience
container_volume 12
creator Nilsson-Kerr, K.
Anand, P.
Sexton, P. F.
Leng, M. J.
Misra, S.
Clemens, S. C.
Hammond, S. J.
description The responses of Asian monsoon subsystems to both hemispheric climate forcing and external orbital forcing are currently issues of vigorous debate. The Indian summer monsoon is the dominant monsoon subsystem in terms of energy flux, constituting one of Earth’s most dynamic expressions of ocean–atmosphere interactions. Yet, the Indian summer monsoon is grossly under-represented in Asian monsoon palaeoclimate records. Here, we present high-resolution records of Indian summer monsoon-induced rainfall and fluvial runoff recovered in a sediment core from the Bay of Bengal across Termination II, 139–127 thousand years ago, including coupled measurements of the oxygen isotopic composition and Mg/Ca, Mn/Ca, Nd/Ca and U/Ca ratios in surface-ocean-dwelling foraminifera. Our data reveal a millennial-scale transient strengthening of the Asian monsoon that punctuates Termination II associated with an oscillation of the bipolar seesaw. The progression of deglacial warming across Termination II emerges first in the Southern Hemisphere, then the tropics in tandem with Indian summer monsoon strengthening, and finally the Northern Hemisphere. We therefore suggest that the Indian summer monsoon was a conduit for conveying Southern Hemisphere latent heat northwards, thereby promoting subsequent Northern Hemisphere deglaciation. During deglacial warming at Termination II, about 130,000 years ago, the Indian summer monsoon helped convey heat northwards as deglaciation progressed from the Southern to the Northern Hemisphere, according to sediment records from the Bay of Bengal.
doi_str_mv 10.1038/s41561-019-0319-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199190190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199190190</sourcerecordid><originalsourceid>FETCH-LOGICAL-a448t-3817908ffc1188feb25466e8fc6c3b91ff6ec0b7cd67581683243e88d012edff3</originalsourceid><addsrcrecordid>eNp1kMtqwzAQRUVpoenjA7ozdK1WY9mytAyhLwgUSrsrCFseJQ6xlWqcRf6-Cm7pqpt5wLl3hsvYDYg7EFLfUwGlAi7AcCFTKU_YDKoy58IIffo7a1OcswuijRBKFFU5Y59vYYtZ8NmcunrIaN_3GLM-DBTCcW3oQCP2lHVDNq4xtREjX2Pf0W6NsXPZLoZVRKIu8cmnxdW2dl09pv2Knfl6S3j90y_Zx-PD--KZL1-fXhbzJa-LQo9caqjSl947AK09NnlZKIXaO-VkY8B7hU40lWtVVWpQWuaFRK1bATm23stLdjv5pl--9kij3YR9HNJJm4MxYFIsIlEwUS4Gooje7mLX1_FgQdhjiHYK0SbaHkO0ZdLkk4YSO6ww_jn_L_oGL-Z1wQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199190190</pqid></control><display><type>article</type><title>Role of Asian summer monsoon subsystems in the inter-hemispheric progression of deglaciation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nilsson-Kerr, K. ; Anand, P. ; Sexton, P. F. ; Leng, M. J. ; Misra, S. ; Clemens, S. C. ; Hammond, S. J.</creator><creatorcontrib>Nilsson-Kerr, K. ; Anand, P. ; Sexton, P. F. ; Leng, M. J. ; Misra, S. ; Clemens, S. C. ; Hammond, S. J.</creatorcontrib><description>The responses of Asian monsoon subsystems to both hemispheric climate forcing and external orbital forcing are currently issues of vigorous debate. The Indian summer monsoon is the dominant monsoon subsystem in terms of energy flux, constituting one of Earth’s most dynamic expressions of ocean–atmosphere interactions. Yet, the Indian summer monsoon is grossly under-represented in Asian monsoon palaeoclimate records. Here, we present high-resolution records of Indian summer monsoon-induced rainfall and fluvial runoff recovered in a sediment core from the Bay of Bengal across Termination II, 139–127 thousand years ago, including coupled measurements of the oxygen isotopic composition and Mg/Ca, Mn/Ca, Nd/Ca and U/Ca ratios in surface-ocean-dwelling foraminifera. Our data reveal a millennial-scale transient strengthening of the Asian monsoon that punctuates Termination II associated with an oscillation of the bipolar seesaw. The progression of deglacial warming across Termination II emerges first in the Southern Hemisphere, then the tropics in tandem with Indian summer monsoon strengthening, and finally the Northern Hemisphere. We therefore suggest that the Indian summer monsoon was a conduit for conveying Southern Hemisphere latent heat northwards, thereby promoting subsequent Northern Hemisphere deglaciation. During deglacial warming at Termination II, about 130,000 years ago, the Indian summer monsoon helped convey heat northwards as deglaciation progressed from the Southern to the Northern Hemisphere, according to sediment records from the Bay of Bengal.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/s41561-019-0319-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/2738 ; 704/106/413 ; Asian monsoons ; Calcium ; Deglaciation ; Earth ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Energy flux ; Energy transfer ; Foraminifera ; Geochemistry ; Geology ; Geophysics/Geodesy ; Interactions ; Isotope composition ; Isotopes ; Latent heat ; Magnesium ; Manganese ; Meltwater ; Monsoon climates ; Monsoon rainfall ; Monsoons ; Northern Hemisphere ; Ocean currents ; Oceans ; Oxygen ; Palaeoclimate ; Paleoclimate ; Rain ; Rainfall ; Ratios ; Records ; Runoff ; Southern Hemisphere ; Subsystems ; Summer ; Summer monsoon ; Tropical environments ; Wind</subject><ispartof>Nature geoscience, 2019-04, Vol.12 (4), p.290-295</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a448t-3817908ffc1188feb25466e8fc6c3b91ff6ec0b7cd67581683243e88d012edff3</citedby><cites>FETCH-LOGICAL-a448t-3817908ffc1188feb25466e8fc6c3b91ff6ec0b7cd67581683243e88d012edff3</cites><orcidid>0000-0001-7379-2684 ; 0000-0002-1136-7815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41561-019-0319-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41561-019-0319-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Nilsson-Kerr, K.</creatorcontrib><creatorcontrib>Anand, P.</creatorcontrib><creatorcontrib>Sexton, P. F.</creatorcontrib><creatorcontrib>Leng, M. J.</creatorcontrib><creatorcontrib>Misra, S.</creatorcontrib><creatorcontrib>Clemens, S. C.</creatorcontrib><creatorcontrib>Hammond, S. J.</creatorcontrib><title>Role of Asian summer monsoon subsystems in the inter-hemispheric progression of deglaciation</title><title>Nature geoscience</title><addtitle>Nat. Geosci</addtitle><description>The responses of Asian monsoon subsystems to both hemispheric climate forcing and external orbital forcing are currently issues of vigorous debate. The Indian summer monsoon is the dominant monsoon subsystem in terms of energy flux, constituting one of Earth’s most dynamic expressions of ocean–atmosphere interactions. Yet, the Indian summer monsoon is grossly under-represented in Asian monsoon palaeoclimate records. Here, we present high-resolution records of Indian summer monsoon-induced rainfall and fluvial runoff recovered in a sediment core from the Bay of Bengal across Termination II, 139–127 thousand years ago, including coupled measurements of the oxygen isotopic composition and Mg/Ca, Mn/Ca, Nd/Ca and U/Ca ratios in surface-ocean-dwelling foraminifera. Our data reveal a millennial-scale transient strengthening of the Asian monsoon that punctuates Termination II associated with an oscillation of the bipolar seesaw. The progression of deglacial warming across Termination II emerges first in the Southern Hemisphere, then the tropics in tandem with Indian summer monsoon strengthening, and finally the Northern Hemisphere. We therefore suggest that the Indian summer monsoon was a conduit for conveying Southern Hemisphere latent heat northwards, thereby promoting subsequent Northern Hemisphere deglaciation. During deglacial warming at Termination II, about 130,000 years ago, the Indian summer monsoon helped convey heat northwards as deglaciation progressed from the Southern to the Northern Hemisphere, according to sediment records from the Bay of Bengal.</description><subject>704/106/2738</subject><subject>704/106/413</subject><subject>Asian monsoons</subject><subject>Calcium</subject><subject>Deglaciation</subject><subject>Earth</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Energy flux</subject><subject>Energy transfer</subject><subject>Foraminifera</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Interactions</subject><subject>Isotope composition</subject><subject>Isotopes</subject><subject>Latent heat</subject><subject>Magnesium</subject><subject>Manganese</subject><subject>Meltwater</subject><subject>Monsoon climates</subject><subject>Monsoon rainfall</subject><subject>Monsoons</subject><subject>Northern Hemisphere</subject><subject>Ocean currents</subject><subject>Oceans</subject><subject>Oxygen</subject><subject>Palaeoclimate</subject><subject>Paleoclimate</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Ratios</subject><subject>Records</subject><subject>Runoff</subject><subject>Southern Hemisphere</subject><subject>Subsystems</subject><subject>Summer</subject><subject>Summer monsoon</subject><subject>Tropical environments</subject><subject>Wind</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtqwzAQRUVpoenjA7ozdK1WY9mytAyhLwgUSrsrCFseJQ6xlWqcRf6-Cm7pqpt5wLl3hsvYDYg7EFLfUwGlAi7AcCFTKU_YDKoy58IIffo7a1OcswuijRBKFFU5Y59vYYtZ8NmcunrIaN_3GLM-DBTCcW3oQCP2lHVDNq4xtREjX2Pf0W6NsXPZLoZVRKIu8cmnxdW2dl09pv2Knfl6S3j90y_Zx-PD--KZL1-fXhbzJa-LQo9caqjSl947AK09NnlZKIXaO-VkY8B7hU40lWtVVWpQWuaFRK1bATm23stLdjv5pl--9kij3YR9HNJJm4MxYFIsIlEwUS4Gooje7mLX1_FgQdhjiHYK0SbaHkO0ZdLkk4YSO6ww_jn_L_oGL-Z1wQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Nilsson-Kerr, K.</creator><creator>Anand, P.</creator><creator>Sexton, P. F.</creator><creator>Leng, M. J.</creator><creator>Misra, S.</creator><creator>Clemens, S. C.</creator><creator>Hammond, S. J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-7379-2684</orcidid><orcidid>https://orcid.org/0000-0002-1136-7815</orcidid></search><sort><creationdate>20190401</creationdate><title>Role of Asian summer monsoon subsystems in the inter-hemispheric progression of deglaciation</title><author>Nilsson-Kerr, K. ; Anand, P. ; Sexton, P. F. ; Leng, M. J. ; Misra, S. ; Clemens, S. C. ; Hammond, S. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a448t-3817908ffc1188feb25466e8fc6c3b91ff6ec0b7cd67581683243e88d012edff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>704/106/2738</topic><topic>704/106/413</topic><topic>Asian monsoons</topic><topic>Calcium</topic><topic>Deglaciation</topic><topic>Earth</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Energy flux</topic><topic>Energy transfer</topic><topic>Foraminifera</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Interactions</topic><topic>Isotope composition</topic><topic>Isotopes</topic><topic>Latent heat</topic><topic>Magnesium</topic><topic>Manganese</topic><topic>Meltwater</topic><topic>Monsoon climates</topic><topic>Monsoon rainfall</topic><topic>Monsoons</topic><topic>Northern Hemisphere</topic><topic>Ocean currents</topic><topic>Oceans</topic><topic>Oxygen</topic><topic>Palaeoclimate</topic><topic>Paleoclimate</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Ratios</topic><topic>Records</topic><topic>Runoff</topic><topic>Southern Hemisphere</topic><topic>Subsystems</topic><topic>Summer</topic><topic>Summer monsoon</topic><topic>Tropical environments</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nilsson-Kerr, K.</creatorcontrib><creatorcontrib>Anand, P.</creatorcontrib><creatorcontrib>Sexton, P. F.</creatorcontrib><creatorcontrib>Leng, M. J.</creatorcontrib><creatorcontrib>Misra, S.</creatorcontrib><creatorcontrib>Clemens, S. C.</creatorcontrib><creatorcontrib>Hammond, S. J.</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nilsson-Kerr, K.</au><au>Anand, P.</au><au>Sexton, P. F.</au><au>Leng, M. J.</au><au>Misra, S.</au><au>Clemens, S. C.</au><au>Hammond, S. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Asian summer monsoon subsystems in the inter-hemispheric progression of deglaciation</atitle><jtitle>Nature geoscience</jtitle><stitle>Nat. Geosci</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>12</volume><issue>4</issue><spage>290</spage><epage>295</epage><pages>290-295</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>The responses of Asian monsoon subsystems to both hemispheric climate forcing and external orbital forcing are currently issues of vigorous debate. The Indian summer monsoon is the dominant monsoon subsystem in terms of energy flux, constituting one of Earth’s most dynamic expressions of ocean–atmosphere interactions. Yet, the Indian summer monsoon is grossly under-represented in Asian monsoon palaeoclimate records. Here, we present high-resolution records of Indian summer monsoon-induced rainfall and fluvial runoff recovered in a sediment core from the Bay of Bengal across Termination II, 139–127 thousand years ago, including coupled measurements of the oxygen isotopic composition and Mg/Ca, Mn/Ca, Nd/Ca and U/Ca ratios in surface-ocean-dwelling foraminifera. Our data reveal a millennial-scale transient strengthening of the Asian monsoon that punctuates Termination II associated with an oscillation of the bipolar seesaw. The progression of deglacial warming across Termination II emerges first in the Southern Hemisphere, then the tropics in tandem with Indian summer monsoon strengthening, and finally the Northern Hemisphere. We therefore suggest that the Indian summer monsoon was a conduit for conveying Southern Hemisphere latent heat northwards, thereby promoting subsequent Northern Hemisphere deglaciation. During deglacial warming at Termination II, about 130,000 years ago, the Indian summer monsoon helped convey heat northwards as deglaciation progressed from the Southern to the Northern Hemisphere, according to sediment records from the Bay of Bengal.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41561-019-0319-5</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7379-2684</orcidid><orcidid>https://orcid.org/0000-0002-1136-7815</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1752-0894
ispartof Nature geoscience, 2019-04, Vol.12 (4), p.290-295
issn 1752-0894
1752-0908
language eng
recordid cdi_proquest_journals_2199190190
source SpringerLink Journals - AutoHoldings
subjects 704/106/2738
704/106/413
Asian monsoons
Calcium
Deglaciation
Earth
Earth and Environmental Science
Earth Sciences
Earth System Sciences
Energy flux
Energy transfer
Foraminifera
Geochemistry
Geology
Geophysics/Geodesy
Interactions
Isotope composition
Isotopes
Latent heat
Magnesium
Manganese
Meltwater
Monsoon climates
Monsoon rainfall
Monsoons
Northern Hemisphere
Ocean currents
Oceans
Oxygen
Palaeoclimate
Paleoclimate
Rain
Rainfall
Ratios
Records
Runoff
Southern Hemisphere
Subsystems
Summer
Summer monsoon
Tropical environments
Wind
title Role of Asian summer monsoon subsystems in the inter-hemispheric progression of deglaciation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Asian%20summer%20monsoon%20subsystems%20in%20the%20inter-hemispheric%20progression%20of%20deglaciation&rft.jtitle=Nature%20geoscience&rft.au=Nilsson-Kerr,%20K.&rft.date=2019-04-01&rft.volume=12&rft.issue=4&rft.spage=290&rft.epage=295&rft.pages=290-295&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/s41561-019-0319-5&rft_dat=%3Cproquest_cross%3E2199190190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199190190&rft_id=info:pmid/&rfr_iscdi=true