Electron-Ion-Plasma Doping of Aluminum Surface with Copper and Titanium - A Comparative Analysis of the Formed Structure and Properties

Deposition of a titanium or a copper film onto the surface of commercially pure A7 aluminum and irradiation of the “film/substrate” system with an intense pulsed electron beam are carried out in a single vacuum cycle. Formation of a surface doped layer with a thickness of (20-30) μm is revealed. It...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2018-09, Vol.781, p.76-81
Hauptverfasser: Klopotov, Аnatoliy A., Tolkachev, Oleg S., Ivanov, Yurii F., Potekaev, Aleksandr I., Tsvetkov, Nikolaii, Moskvin, Pavel, Ivanova, Olga V., Petrikova, Elizaveta A., Krysina, Olga V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 81
container_issue
container_start_page 76
container_title Key engineering materials
container_volume 781
creator Klopotov, Аnatoliy A.
Tolkachev, Oleg S.
Ivanov, Yurii F.
Potekaev, Aleksandr I.
Tsvetkov, Nikolaii
Moskvin, Pavel
Ivanova, Olga V.
Petrikova, Elizaveta A.
Krysina, Olga V.
description Deposition of a titanium or a copper film onto the surface of commercially pure A7 aluminum and irradiation of the “film/substrate” system with an intense pulsed electron beam are carried out in a single vacuum cycle. Formation of a surface doped layer with a thickness of (20-30) μm is revealed. It is shown that the modified layer has a multiphase structure of a cellular rapid solidification of the submicron-nanosized range. Irradiation parameters are determined. It is established that the developed modification method allows forming a surface doped layer with the microhardness more than 4 times (Ti-Al alloy) or more than 3 times (Cu-Al alloy) greater than the microhardness of A7 aluminum; the wear resistance of the surface alloy Ti-Al exceeds the wear resistance of the initial aluminum in ≈2.4 times; doping of aluminum with copper is accompanied with an increase in the wear resistance of the material in ≈1.5 times.
doi_str_mv 10.4028/www.scientific.net/KEM.781.76
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199168249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199168249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2086-94ff3eb18d60456ac7d3423146cb9628316c397e30b1fb92581b5b9a5b7a0e393</originalsourceid><addsrcrecordid>eNqNkN1O3DAQhaOqSKXAO1iqepngn8SxL1C12i4UAQIJem053glrlNip7bDiCXjtelkkbrkYzWh0zpnRVxQ_Ca5qTMXpdrutorHgku2tqRyk06vVTdUKUrX8S3FIOKelbGXzNc-YsFIKyr8V32N8wpgRQZrD4nU1gEnBu_Iy192g46jRbz9Z94h8jxbDPFo3j-h-Dr02gLY2bdDSTxMEpN0aPdiknc2CEi3yfpx00Mk-A1o4PbxEG3cpaQPo3IcR1ug-hdmkOcCb-y74HJQsxOPioNdDhJP3flT8PV89LP-U17cXl8vFdWkoFryUdd8z6IhYc1w3XJt2zWrKSM1NJzkVjHDDZAsMd6TvJG0E6ZpO6qZrNQYm2VHxY587Bf9vhpjUk59D_jUqSqQkXNB6pzrbq0zwMQbo1RTsqMOLIljt2KvMXn2wV5m9yuxVZq9anv2_9v4UtIsJzObjzOcS_gOni5ZY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199168249</pqid></control><display><type>article</type><title>Electron-Ion-Plasma Doping of Aluminum Surface with Copper and Titanium - A Comparative Analysis of the Formed Structure and Properties</title><source>Scientific.net Journals</source><creator>Klopotov, Аnatoliy A. ; Tolkachev, Oleg S. ; Ivanov, Yurii F. ; Potekaev, Aleksandr I. ; Tsvetkov, Nikolaii ; Moskvin, Pavel ; Ivanova, Olga V. ; Petrikova, Elizaveta A. ; Krysina, Olga V.</creator><creatorcontrib>Klopotov, Аnatoliy A. ; Tolkachev, Oleg S. ; Ivanov, Yurii F. ; Potekaev, Aleksandr I. ; Tsvetkov, Nikolaii ; Moskvin, Pavel ; Ivanova, Olga V. ; Petrikova, Elizaveta A. ; Krysina, Olga V.</creatorcontrib><description>Deposition of a titanium or a copper film onto the surface of commercially pure A7 aluminum and irradiation of the “film/substrate” system with an intense pulsed electron beam are carried out in a single vacuum cycle. Formation of a surface doped layer with a thickness of (20-30) μm is revealed. It is shown that the modified layer has a multiphase structure of a cellular rapid solidification of the submicron-nanosized range. Irradiation parameters are determined. It is established that the developed modification method allows forming a surface doped layer with the microhardness more than 4 times (Ti-Al alloy) or more than 3 times (Cu-Al alloy) greater than the microhardness of A7 aluminum; the wear resistance of the surface alloy Ti-Al exceeds the wear resistance of the initial aluminum in ≈2.4 times; doping of aluminum with copper is accompanied with an increase in the wear resistance of the material in ≈1.5 times.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.781.76</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Aluminum ; Aluminum base alloys ; Cellular structure ; Copper ; Doping ; Electron beams ; Irradiation ; Microhardness ; Parameter modification ; Rapid solidification ; Substrates ; Surface alloying ; Thickness ; Titanium base alloys ; Wear resistance</subject><ispartof>Key engineering materials, 2018-09, Vol.781, p.76-81</ispartof><rights>2018 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Sep 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2086-94ff3eb18d60456ac7d3423146cb9628316c397e30b1fb92581b5b9a5b7a0e393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4800?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Klopotov, Аnatoliy A.</creatorcontrib><creatorcontrib>Tolkachev, Oleg S.</creatorcontrib><creatorcontrib>Ivanov, Yurii F.</creatorcontrib><creatorcontrib>Potekaev, Aleksandr I.</creatorcontrib><creatorcontrib>Tsvetkov, Nikolaii</creatorcontrib><creatorcontrib>Moskvin, Pavel</creatorcontrib><creatorcontrib>Ivanova, Olga V.</creatorcontrib><creatorcontrib>Petrikova, Elizaveta A.</creatorcontrib><creatorcontrib>Krysina, Olga V.</creatorcontrib><title>Electron-Ion-Plasma Doping of Aluminum Surface with Copper and Titanium - A Comparative Analysis of the Formed Structure and Properties</title><title>Key engineering materials</title><description>Deposition of a titanium or a copper film onto the surface of commercially pure A7 aluminum and irradiation of the “film/substrate” system with an intense pulsed electron beam are carried out in a single vacuum cycle. Formation of a surface doped layer with a thickness of (20-30) μm is revealed. It is shown that the modified layer has a multiphase structure of a cellular rapid solidification of the submicron-nanosized range. Irradiation parameters are determined. It is established that the developed modification method allows forming a surface doped layer with the microhardness more than 4 times (Ti-Al alloy) or more than 3 times (Cu-Al alloy) greater than the microhardness of A7 aluminum; the wear resistance of the surface alloy Ti-Al exceeds the wear resistance of the initial aluminum in ≈2.4 times; doping of aluminum with copper is accompanied with an increase in the wear resistance of the material in ≈1.5 times.</description><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Cellular structure</subject><subject>Copper</subject><subject>Doping</subject><subject>Electron beams</subject><subject>Irradiation</subject><subject>Microhardness</subject><subject>Parameter modification</subject><subject>Rapid solidification</subject><subject>Substrates</subject><subject>Surface alloying</subject><subject>Thickness</subject><subject>Titanium base alloys</subject><subject>Wear resistance</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkN1O3DAQhaOqSKXAO1iqepngn8SxL1C12i4UAQIJem053glrlNip7bDiCXjtelkkbrkYzWh0zpnRVxQ_Ca5qTMXpdrutorHgku2tqRyk06vVTdUKUrX8S3FIOKelbGXzNc-YsFIKyr8V32N8wpgRQZrD4nU1gEnBu_Iy192g46jRbz9Z94h8jxbDPFo3j-h-Dr02gLY2bdDSTxMEpN0aPdiknc2CEi3yfpx00Mk-A1o4PbxEG3cpaQPo3IcR1ug-hdmkOcCb-y74HJQsxOPioNdDhJP3flT8PV89LP-U17cXl8vFdWkoFryUdd8z6IhYc1w3XJt2zWrKSM1NJzkVjHDDZAsMd6TvJG0E6ZpO6qZrNQYm2VHxY587Bf9vhpjUk59D_jUqSqQkXNB6pzrbq0zwMQbo1RTsqMOLIljt2KvMXn2wV5m9yuxVZq9anv2_9v4UtIsJzObjzOcS_gOni5ZY</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Klopotov, Аnatoliy A.</creator><creator>Tolkachev, Oleg S.</creator><creator>Ivanov, Yurii F.</creator><creator>Potekaev, Aleksandr I.</creator><creator>Tsvetkov, Nikolaii</creator><creator>Moskvin, Pavel</creator><creator>Ivanova, Olga V.</creator><creator>Petrikova, Elizaveta A.</creator><creator>Krysina, Olga V.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180901</creationdate><title>Electron-Ion-Plasma Doping of Aluminum Surface with Copper and Titanium - A Comparative Analysis of the Formed Structure and Properties</title><author>Klopotov, Аnatoliy A. ; Tolkachev, Oleg S. ; Ivanov, Yurii F. ; Potekaev, Aleksandr I. ; Tsvetkov, Nikolaii ; Moskvin, Pavel ; Ivanova, Olga V. ; Petrikova, Elizaveta A. ; Krysina, Olga V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2086-94ff3eb18d60456ac7d3423146cb9628316c397e30b1fb92581b5b9a5b7a0e393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Cellular structure</topic><topic>Copper</topic><topic>Doping</topic><topic>Electron beams</topic><topic>Irradiation</topic><topic>Microhardness</topic><topic>Parameter modification</topic><topic>Rapid solidification</topic><topic>Substrates</topic><topic>Surface alloying</topic><topic>Thickness</topic><topic>Titanium base alloys</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klopotov, Аnatoliy A.</creatorcontrib><creatorcontrib>Tolkachev, Oleg S.</creatorcontrib><creatorcontrib>Ivanov, Yurii F.</creatorcontrib><creatorcontrib>Potekaev, Aleksandr I.</creatorcontrib><creatorcontrib>Tsvetkov, Nikolaii</creatorcontrib><creatorcontrib>Moskvin, Pavel</creatorcontrib><creatorcontrib>Ivanova, Olga V.</creatorcontrib><creatorcontrib>Petrikova, Elizaveta A.</creatorcontrib><creatorcontrib>Krysina, Olga V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klopotov, Аnatoliy A.</au><au>Tolkachev, Oleg S.</au><au>Ivanov, Yurii F.</au><au>Potekaev, Aleksandr I.</au><au>Tsvetkov, Nikolaii</au><au>Moskvin, Pavel</au><au>Ivanova, Olga V.</au><au>Petrikova, Elizaveta A.</au><au>Krysina, Olga V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron-Ion-Plasma Doping of Aluminum Surface with Copper and Titanium - A Comparative Analysis of the Formed Structure and Properties</atitle><jtitle>Key engineering materials</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>781</volume><spage>76</spage><epage>81</epage><pages>76-81</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>Deposition of a titanium or a copper film onto the surface of commercially pure A7 aluminum and irradiation of the “film/substrate” system with an intense pulsed electron beam are carried out in a single vacuum cycle. Formation of a surface doped layer with a thickness of (20-30) μm is revealed. It is shown that the modified layer has a multiphase structure of a cellular rapid solidification of the submicron-nanosized range. Irradiation parameters are determined. It is established that the developed modification method allows forming a surface doped layer with the microhardness more than 4 times (Ti-Al alloy) or more than 3 times (Cu-Al alloy) greater than the microhardness of A7 aluminum; the wear resistance of the surface alloy Ti-Al exceeds the wear resistance of the initial aluminum in ≈2.4 times; doping of aluminum with copper is accompanied with an increase in the wear resistance of the material in ≈1.5 times.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.781.76</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1013-9826
ispartof Key engineering materials, 2018-09, Vol.781, p.76-81
issn 1013-9826
1662-9795
1662-9795
language eng
recordid cdi_proquest_journals_2199168249
source Scientific.net Journals
subjects Aluminum
Aluminum base alloys
Cellular structure
Copper
Doping
Electron beams
Irradiation
Microhardness
Parameter modification
Rapid solidification
Substrates
Surface alloying
Thickness
Titanium base alloys
Wear resistance
title Electron-Ion-Plasma Doping of Aluminum Surface with Copper and Titanium - A Comparative Analysis of the Formed Structure and Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron-Ion-Plasma%20Doping%20of%20Aluminum%20Surface%20with%20Copper%20and%20Titanium%20-%20A%20Comparative%20Analysis%20of%20the%20Formed%20Structure%20and%20Properties&rft.jtitle=Key%20engineering%20materials&rft.au=Klopotov,%20%D0%90natoliy%20A.&rft.date=2018-09-01&rft.volume=781&rft.spage=76&rft.epage=81&rft.pages=76-81&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.781.76&rft_dat=%3Cproquest_cross%3E2199168249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199168249&rft_id=info:pmid/&rfr_iscdi=true