Modification of Hypereutectic Silumin by Ion-Electron-Plasma Method

Hypereutectic silumin is aluminum-silicon alloy. It is widely used as the material for producing pistons and sliding bearings. The samples were obtained in Belorussian State University and in the Physical-Technical Institute of the National Academy of Sciences. The percentage of silicon is 18-20 wt....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2018-04, Vol.769, p.54-59
Hauptverfasser: Rygina, Maria E., Laskovnev, Alexander P., Krysina, Olga V., Petrikova, Elizaveta A., Uglov, Vladimir V., Ivanov, Yurii F., Teresov, Anton D., Cherenda, Nikolay N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue
container_start_page 54
container_title Key engineering materials
container_volume 769
creator Rygina, Maria E.
Laskovnev, Alexander P.
Krysina, Olga V.
Petrikova, Elizaveta A.
Uglov, Vladimir V.
Ivanov, Yurii F.
Teresov, Anton D.
Cherenda, Nikolay N.
description Hypereutectic silumin is aluminum-silicon alloy. It is widely used as the material for producing pistons and sliding bearings. The samples were obtained in Belorussian State University and in the Physical-Technical Institute of the National Academy of Sciences. The percentage of silicon is 18-20 wt.%. The structure has a large number of pores and cracks. The size of pores is 100 μm. The method of modification have been carried out in two steps. The first step is ion-plasma deposition ZrTiCu coating. The second step is melting the coating into the substrate. After modification microhardness is 3.2 GPa, wear resistance is 1.8 times less than in the untreated samples. The crystallites size is 0,2-0,4 μm. Thus, this method allows to obtain alloys in the near-surface layer, grinding the structure and increasing mechanical characteristics.
doi_str_mv 10.4028/www.scientific.net/KEM.769.54
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199076826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199076826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2684-895b68afe7ec89fc56c11b1a533e9c6358f9856dcdd666c74f1c5a3702162f653</originalsourceid><addsrcrecordid>eNqNkEFLAzEQhYMoWKv_YUE87jbZ3cwmBxEp1RZbFNRzSLMJTdluapJS-u9NqdCrp3kM771hPoQeCC5qXLLRfr8vgrK6j9ZYVfQ6jt4mi6IBXtD6Ag0IQJnzhtPLpDGpcs5KuEY3IawxrggjdIDGC9ce0zJa12fOZNPDVnu9i1pFq7JP2-02ts-Wh2zm-nzSpbVP4qOTYSOzhY4r196iKyO7oO_-5hB9v0y-xtN8_v46Gz_Pc1UCq3PG6RKYNLrRinGjKChClkTSqtJcQUWZ4YxCq9oWAFRTG6KorBpcEigN0GqI7k-9W-9-djpEsXY736eToiSc4wbSf8n1eHIp70Lw2oittxvpD4JgceQmEjdx5iYSN5G4icRN0Drln0756GUfEofV-cz_Gn4Bu9p-iA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199076826</pqid></control><display><type>article</type><title>Modification of Hypereutectic Silumin by Ion-Electron-Plasma Method</title><source>Scientific.net Journals</source><creator>Rygina, Maria E. ; Laskovnev, Alexander P. ; Krysina, Olga V. ; Petrikova, Elizaveta A. ; Uglov, Vladimir V. ; Ivanov, Yurii F. ; Teresov, Anton D. ; Cherenda, Nikolay N.</creator><creatorcontrib>Rygina, Maria E. ; Laskovnev, Alexander P. ; Krysina, Olga V. ; Petrikova, Elizaveta A. ; Uglov, Vladimir V. ; Ivanov, Yurii F. ; Teresov, Anton D. ; Cherenda, Nikolay N.</creatorcontrib><description>Hypereutectic silumin is aluminum-silicon alloy. It is widely used as the material for producing pistons and sliding bearings. The samples were obtained in Belorussian State University and in the Physical-Technical Institute of the National Academy of Sciences. The percentage of silicon is 18-20 wt.%. The structure has a large number of pores and cracks. The size of pores is 100 μm. The method of modification have been carried out in two steps. The first step is ion-plasma deposition ZrTiCu coating. The second step is melting the coating into the substrate. After modification microhardness is 3.2 GPa, wear resistance is 1.8 times less than in the untreated samples. The crystallites size is 0,2-0,4 μm. Thus, this method allows to obtain alloys in the near-surface layer, grinding the structure and increasing mechanical characteristics.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.769.54</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Alloys ; Aluminum base alloys ; Cracks ; Crystallites ; Electron plasma ; Engineering ; Intermetallic compounds ; Mechanical properties ; Microhardness ; Pistons ; Plasma ; Plasma deposition ; Protective coatings ; Scanning electron microscopy ; Silicon ; Substrates ; Surface layers ; Thin films ; Wear resistance</subject><ispartof>Key engineering materials, 2018-04, Vol.769, p.54-59</ispartof><rights>2018 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Apr 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2684-895b68afe7ec89fc56c11b1a533e9c6358f9856dcdd666c74f1c5a3702162f653</citedby><cites>FETCH-LOGICAL-c2684-895b68afe7ec89fc56c11b1a533e9c6358f9856dcdd666c74f1c5a3702162f653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4631?width=600</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Rygina, Maria E.</creatorcontrib><creatorcontrib>Laskovnev, Alexander P.</creatorcontrib><creatorcontrib>Krysina, Olga V.</creatorcontrib><creatorcontrib>Petrikova, Elizaveta A.</creatorcontrib><creatorcontrib>Uglov, Vladimir V.</creatorcontrib><creatorcontrib>Ivanov, Yurii F.</creatorcontrib><creatorcontrib>Teresov, Anton D.</creatorcontrib><creatorcontrib>Cherenda, Nikolay N.</creatorcontrib><title>Modification of Hypereutectic Silumin by Ion-Electron-Plasma Method</title><title>Key engineering materials</title><description>Hypereutectic silumin is aluminum-silicon alloy. It is widely used as the material for producing pistons and sliding bearings. The samples were obtained in Belorussian State University and in the Physical-Technical Institute of the National Academy of Sciences. The percentage of silicon is 18-20 wt.%. The structure has a large number of pores and cracks. The size of pores is 100 μm. The method of modification have been carried out in two steps. The first step is ion-plasma deposition ZrTiCu coating. The second step is melting the coating into the substrate. After modification microhardness is 3.2 GPa, wear resistance is 1.8 times less than in the untreated samples. The crystallites size is 0,2-0,4 μm. Thus, this method allows to obtain alloys in the near-surface layer, grinding the structure and increasing mechanical characteristics.</description><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Cracks</subject><subject>Crystallites</subject><subject>Electron plasma</subject><subject>Engineering</subject><subject>Intermetallic compounds</subject><subject>Mechanical properties</subject><subject>Microhardness</subject><subject>Pistons</subject><subject>Plasma</subject><subject>Plasma deposition</subject><subject>Protective coatings</subject><subject>Scanning electron microscopy</subject><subject>Silicon</subject><subject>Substrates</subject><subject>Surface layers</subject><subject>Thin films</subject><subject>Wear resistance</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkEFLAzEQhYMoWKv_YUE87jbZ3cwmBxEp1RZbFNRzSLMJTdluapJS-u9NqdCrp3kM771hPoQeCC5qXLLRfr8vgrK6j9ZYVfQ6jt4mi6IBXtD6Ag0IQJnzhtPLpDGpcs5KuEY3IawxrggjdIDGC9ce0zJa12fOZNPDVnu9i1pFq7JP2-02ts-Wh2zm-nzSpbVP4qOTYSOzhY4r196iKyO7oO_-5hB9v0y-xtN8_v46Gz_Pc1UCq3PG6RKYNLrRinGjKChClkTSqtJcQUWZ4YxCq9oWAFRTG6KorBpcEigN0GqI7k-9W-9-djpEsXY736eToiSc4wbSf8n1eHIp70Lw2oittxvpD4JgceQmEjdx5iYSN5G4icRN0Drln0756GUfEofV-cz_Gn4Bu9p-iA</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Rygina, Maria E.</creator><creator>Laskovnev, Alexander P.</creator><creator>Krysina, Olga V.</creator><creator>Petrikova, Elizaveta A.</creator><creator>Uglov, Vladimir V.</creator><creator>Ivanov, Yurii F.</creator><creator>Teresov, Anton D.</creator><creator>Cherenda, Nikolay N.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180401</creationdate><title>Modification of Hypereutectic Silumin by Ion-Electron-Plasma Method</title><author>Rygina, Maria E. ; Laskovnev, Alexander P. ; Krysina, Olga V. ; Petrikova, Elizaveta A. ; Uglov, Vladimir V. ; Ivanov, Yurii F. ; Teresov, Anton D. ; Cherenda, Nikolay N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2684-895b68afe7ec89fc56c11b1a533e9c6358f9856dcdd666c74f1c5a3702162f653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Cracks</topic><topic>Crystallites</topic><topic>Electron plasma</topic><topic>Engineering</topic><topic>Intermetallic compounds</topic><topic>Mechanical properties</topic><topic>Microhardness</topic><topic>Pistons</topic><topic>Plasma</topic><topic>Plasma deposition</topic><topic>Protective coatings</topic><topic>Scanning electron microscopy</topic><topic>Silicon</topic><topic>Substrates</topic><topic>Surface layers</topic><topic>Thin films</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rygina, Maria E.</creatorcontrib><creatorcontrib>Laskovnev, Alexander P.</creatorcontrib><creatorcontrib>Krysina, Olga V.</creatorcontrib><creatorcontrib>Petrikova, Elizaveta A.</creatorcontrib><creatorcontrib>Uglov, Vladimir V.</creatorcontrib><creatorcontrib>Ivanov, Yurii F.</creatorcontrib><creatorcontrib>Teresov, Anton D.</creatorcontrib><creatorcontrib>Cherenda, Nikolay N.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rygina, Maria E.</au><au>Laskovnev, Alexander P.</au><au>Krysina, Olga V.</au><au>Petrikova, Elizaveta A.</au><au>Uglov, Vladimir V.</au><au>Ivanov, Yurii F.</au><au>Teresov, Anton D.</au><au>Cherenda, Nikolay N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modification of Hypereutectic Silumin by Ion-Electron-Plasma Method</atitle><jtitle>Key engineering materials</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>769</volume><spage>54</spage><epage>59</epage><pages>54-59</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>Hypereutectic silumin is aluminum-silicon alloy. It is widely used as the material for producing pistons and sliding bearings. The samples were obtained in Belorussian State University and in the Physical-Technical Institute of the National Academy of Sciences. The percentage of silicon is 18-20 wt.%. The structure has a large number of pores and cracks. The size of pores is 100 μm. The method of modification have been carried out in two steps. The first step is ion-plasma deposition ZrTiCu coating. The second step is melting the coating into the substrate. After modification microhardness is 3.2 GPa, wear resistance is 1.8 times less than in the untreated samples. The crystallites size is 0,2-0,4 μm. Thus, this method allows to obtain alloys in the near-surface layer, grinding the structure and increasing mechanical characteristics.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.769.54</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1013-9826
ispartof Key engineering materials, 2018-04, Vol.769, p.54-59
issn 1013-9826
1662-9795
1662-9795
language eng
recordid cdi_proquest_journals_2199076826
source Scientific.net Journals
subjects Alloys
Aluminum base alloys
Cracks
Crystallites
Electron plasma
Engineering
Intermetallic compounds
Mechanical properties
Microhardness
Pistons
Plasma
Plasma deposition
Protective coatings
Scanning electron microscopy
Silicon
Substrates
Surface layers
Thin films
Wear resistance
title Modification of Hypereutectic Silumin by Ion-Electron-Plasma Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modification%20of%20Hypereutectic%20Silumin%20by%20Ion-Electron-Plasma%20Method&rft.jtitle=Key%20engineering%20materials&rft.au=Rygina,%20Maria%20E.&rft.date=2018-04-01&rft.volume=769&rft.spage=54&rft.epage=59&rft.pages=54-59&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.769.54&rft_dat=%3Cproquest_cross%3E2199076826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199076826&rft_id=info:pmid/&rfr_iscdi=true