The Influence of Activator Composition on the Strength, Shrinkage and Chloride Migration Resistance of Alkali-Activated Slag Mortars

Alkali-activated slag materials are known for their high chloride penetration resistance. This makes them potentially applicable as repair systems for damaged steel-reinforced concrete structures, which are exposed to chloride attack. For this purpose, the influence of the activator composition, i.e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2018, Vol.761, p.61-64
Hauptverfasser: Hu, Nan Jie, Hüsken, Götz, Gluth, Gregor J.G., Kühne, Hans Carsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue
container_start_page 61
container_title Key engineering materials
container_volume 761
creator Hu, Nan Jie
Hüsken, Götz
Gluth, Gregor J.G.
Kühne, Hans Carsten
description Alkali-activated slag materials are known for their high chloride penetration resistance. This makes them potentially applicable as repair systems for damaged steel-reinforced concrete structures, which are exposed to chloride attack. For this purpose, the influence of the activator composition, i.e. the SiO2 and Na2O concentration of the alkaline solution on a) the compressive strength, b) shrinkage and mass change and c) the resistance against chloride penetration of four alkali-activated slag mortars (AASM) were studied. An ordinary Portland cement-based mortar was used as the reference sample. Increasing SiO2 and Na2O concentrations increased the strength, shrinkage and mass loss of the AASMs. The resistance of the mortars against chloride penetration was evaluated using the non-steady-state migration coefficient Dnssm obtained from NT BUILD 492. The results indicate that the Dnssm is related to differences in the pore solution of the AASMs rather than to differences in their microstructure. An upcoming study of the authors is going to evaluate this hypothesis by the accelerated chloride penetration (diffusion) test.
doi_str_mv 10.4028/www.scientific.net/KEM.761.61
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199075625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199075625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3071-e7dba311e025e1afec3cb5b4185fb3ae0252dead873a431107b0f20b322bd43b3</originalsourceid><addsrcrecordid>eNqNkEtLAzEQxxdR8PkdAuLNXfPY50FESn1gi2D1HLLZ2d3UNalJavHuBze1Sq_CwAzD_wG_KDojOEkxLS9Wq1XipALtVatkosFfPIynSZGTJCc70QHJcxpXRZXthhsTFlclzfejQ-fmGDNSkuwg-nruAd3rdliCloBMi66lVx_CG4tG5m1hnPLKaBTGB-XMW9Cd78_RrLdKv4oOkNANGvWDsaoBNFWdFT-OJ3DKefGXOryKQcW_4dCg2SA6NDXWC-uOo71WDA5OfvdR9HIzfh7dxZPH2_vR9SSWDBckhqKpBSMEMM2AiBYkk3VWp6TM2pqJ9Zs2IJqyYCINOlzUuKW4ZpTWTcpqdhSdbnIX1rwvwXk-N0urQyWnpKpwkeU0C6rLjUpa45yFli-sehP2kxPM1-B5AM-34HkAzwN4HsDznAT_1cbvrdDOg-y3Nf9L-AYtwpae</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199075625</pqid></control><display><type>article</type><title>The Influence of Activator Composition on the Strength, Shrinkage and Chloride Migration Resistance of Alkali-Activated Slag Mortars</title><source>Scientific.net Journals</source><creator>Hu, Nan Jie ; Hüsken, Götz ; Gluth, Gregor J.G. ; Kühne, Hans Carsten</creator><creatorcontrib>Hu, Nan Jie ; Hüsken, Götz ; Gluth, Gregor J.G. ; Kühne, Hans Carsten</creatorcontrib><description>Alkali-activated slag materials are known for their high chloride penetration resistance. This makes them potentially applicable as repair systems for damaged steel-reinforced concrete structures, which are exposed to chloride attack. For this purpose, the influence of the activator composition, i.e. the SiO2 and Na2O concentration of the alkaline solution on a) the compressive strength, b) shrinkage and mass change and c) the resistance against chloride penetration of four alkali-activated slag mortars (AASM) were studied. An ordinary Portland cement-based mortar was used as the reference sample. Increasing SiO2 and Na2O concentrations increased the strength, shrinkage and mass loss of the AASMs. The resistance of the mortars against chloride penetration was evaluated using the non-steady-state migration coefficient Dnssm obtained from NT BUILD 492. The results indicate that the Dnssm is related to differences in the pore solution of the AASMs rather than to differences in their microstructure. An upcoming study of the authors is going to evaluate this hypothesis by the accelerated chloride penetration (diffusion) test.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.761.61</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Accelerated tests ; Chloride ; Chloride resistance ; Composition ; Compressive strength ; Concrete structures ; Migration ; Mortars (material) ; Penetration ; Penetration resistance ; Portland cements ; Reinforced concrete ; Reinforcing steels ; Shrinkage ; Silicon dioxide ; Slag ; Steel structures ; Structural damage</subject><ispartof>Key engineering materials, 2018, Vol.761, p.61-64</ispartof><rights>2018 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jan 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3071-e7dba311e025e1afec3cb5b4185fb3ae0252dead873a431107b0f20b322bd43b3</citedby><cites>FETCH-LOGICAL-c3071-e7dba311e025e1afec3cb5b4185fb3ae0252dead873a431107b0f20b322bd43b3</cites><orcidid>0000-0002-1463-0308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4446?width=600</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Hu, Nan Jie</creatorcontrib><creatorcontrib>Hüsken, Götz</creatorcontrib><creatorcontrib>Gluth, Gregor J.G.</creatorcontrib><creatorcontrib>Kühne, Hans Carsten</creatorcontrib><title>The Influence of Activator Composition on the Strength, Shrinkage and Chloride Migration Resistance of Alkali-Activated Slag Mortars</title><title>Key engineering materials</title><description>Alkali-activated slag materials are known for their high chloride penetration resistance. This makes them potentially applicable as repair systems for damaged steel-reinforced concrete structures, which are exposed to chloride attack. For this purpose, the influence of the activator composition, i.e. the SiO2 and Na2O concentration of the alkaline solution on a) the compressive strength, b) shrinkage and mass change and c) the resistance against chloride penetration of four alkali-activated slag mortars (AASM) were studied. An ordinary Portland cement-based mortar was used as the reference sample. Increasing SiO2 and Na2O concentrations increased the strength, shrinkage and mass loss of the AASMs. The resistance of the mortars against chloride penetration was evaluated using the non-steady-state migration coefficient Dnssm obtained from NT BUILD 492. The results indicate that the Dnssm is related to differences in the pore solution of the AASMs rather than to differences in their microstructure. An upcoming study of the authors is going to evaluate this hypothesis by the accelerated chloride penetration (diffusion) test.</description><subject>Accelerated tests</subject><subject>Chloride</subject><subject>Chloride resistance</subject><subject>Composition</subject><subject>Compressive strength</subject><subject>Concrete structures</subject><subject>Migration</subject><subject>Mortars (material)</subject><subject>Penetration</subject><subject>Penetration resistance</subject><subject>Portland cements</subject><subject>Reinforced concrete</subject><subject>Reinforcing steels</subject><subject>Shrinkage</subject><subject>Silicon dioxide</subject><subject>Slag</subject><subject>Steel structures</subject><subject>Structural damage</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkEtLAzEQxxdR8PkdAuLNXfPY50FESn1gi2D1HLLZ2d3UNalJavHuBze1Sq_CwAzD_wG_KDojOEkxLS9Wq1XipALtVatkosFfPIynSZGTJCc70QHJcxpXRZXthhsTFlclzfejQ-fmGDNSkuwg-nruAd3rdliCloBMi66lVx_CG4tG5m1hnPLKaBTGB-XMW9Cd78_RrLdKv4oOkNANGvWDsaoBNFWdFT-OJ3DKefGXOryKQcW_4dCg2SA6NDXWC-uOo71WDA5OfvdR9HIzfh7dxZPH2_vR9SSWDBckhqKpBSMEMM2AiBYkk3VWp6TM2pqJ9Zs2IJqyYCINOlzUuKW4ZpTWTcpqdhSdbnIX1rwvwXk-N0urQyWnpKpwkeU0C6rLjUpa45yFli-sehP2kxPM1-B5AM-34HkAzwN4HsDznAT_1cbvrdDOg-y3Nf9L-AYtwpae</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Hu, Nan Jie</creator><creator>Hüsken, Götz</creator><creator>Gluth, Gregor J.G.</creator><creator>Kühne, Hans Carsten</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1463-0308</orcidid></search><sort><creationdate>2018</creationdate><title>The Influence of Activator Composition on the Strength, Shrinkage and Chloride Migration Resistance of Alkali-Activated Slag Mortars</title><author>Hu, Nan Jie ; Hüsken, Götz ; Gluth, Gregor J.G. ; Kühne, Hans Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3071-e7dba311e025e1afec3cb5b4185fb3ae0252dead873a431107b0f20b322bd43b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accelerated tests</topic><topic>Chloride</topic><topic>Chloride resistance</topic><topic>Composition</topic><topic>Compressive strength</topic><topic>Concrete structures</topic><topic>Migration</topic><topic>Mortars (material)</topic><topic>Penetration</topic><topic>Penetration resistance</topic><topic>Portland cements</topic><topic>Reinforced concrete</topic><topic>Reinforcing steels</topic><topic>Shrinkage</topic><topic>Silicon dioxide</topic><topic>Slag</topic><topic>Steel structures</topic><topic>Structural damage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Nan Jie</creatorcontrib><creatorcontrib>Hüsken, Götz</creatorcontrib><creatorcontrib>Gluth, Gregor J.G.</creatorcontrib><creatorcontrib>Kühne, Hans Carsten</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Nan Jie</au><au>Hüsken, Götz</au><au>Gluth, Gregor J.G.</au><au>Kühne, Hans Carsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Influence of Activator Composition on the Strength, Shrinkage and Chloride Migration Resistance of Alkali-Activated Slag Mortars</atitle><jtitle>Key engineering materials</jtitle><date>2018</date><risdate>2018</risdate><volume>761</volume><spage>61</spage><epage>64</epage><pages>61-64</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>Alkali-activated slag materials are known for their high chloride penetration resistance. This makes them potentially applicable as repair systems for damaged steel-reinforced concrete structures, which are exposed to chloride attack. For this purpose, the influence of the activator composition, i.e. the SiO2 and Na2O concentration of the alkaline solution on a) the compressive strength, b) shrinkage and mass change and c) the resistance against chloride penetration of four alkali-activated slag mortars (AASM) were studied. An ordinary Portland cement-based mortar was used as the reference sample. Increasing SiO2 and Na2O concentrations increased the strength, shrinkage and mass loss of the AASMs. The resistance of the mortars against chloride penetration was evaluated using the non-steady-state migration coefficient Dnssm obtained from NT BUILD 492. The results indicate that the Dnssm is related to differences in the pore solution of the AASMs rather than to differences in their microstructure. An upcoming study of the authors is going to evaluate this hypothesis by the accelerated chloride penetration (diffusion) test.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.761.61</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-1463-0308</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1013-9826
ispartof Key engineering materials, 2018, Vol.761, p.61-64
issn 1013-9826
1662-9795
1662-9795
language eng
recordid cdi_proquest_journals_2199075625
source Scientific.net Journals
subjects Accelerated tests
Chloride
Chloride resistance
Composition
Compressive strength
Concrete structures
Migration
Mortars (material)
Penetration
Penetration resistance
Portland cements
Reinforced concrete
Reinforcing steels
Shrinkage
Silicon dioxide
Slag
Steel structures
Structural damage
title The Influence of Activator Composition on the Strength, Shrinkage and Chloride Migration Resistance of Alkali-Activated Slag Mortars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Influence%20of%20Activator%20Composition%20on%20the%20Strength,%20Shrinkage%20and%20Chloride%20Migration%20Resistance%20of%20Alkali-Activated%20Slag%20Mortars&rft.jtitle=Key%20engineering%20materials&rft.au=Hu,%20Nan%20Jie&rft.date=2018&rft.volume=761&rft.spage=61&rft.epage=64&rft.pages=61-64&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.761.61&rft_dat=%3Cproquest_cross%3E2199075625%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199075625&rft_id=info:pmid/&rfr_iscdi=true