Water Electrolysis Carried Out on Microelectrodes to Obtain New Insights into the Regulation of Cytosolic pH
In this study, the use of electrochemistry in cell biology is extended by showing that electrochemically generated microscale pH gradients can be used to gain new insights into the regulation of cytosolic pH of normal and cancer cells. The developed procedure involves positioning a carbon fiber micr...
Gespeichert in:
Veröffentlicht in: | ChemElectroChem 2019-03, Vol.6 (6), p.1800-1807 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1807 |
---|---|
container_issue | 6 |
container_start_page | 1800 |
container_title | ChemElectroChem |
container_volume | 6 |
creator | Munteanu, Raluca‐Elena Stănică, Luciana Gheorghiu, Mihaela Gáspár, Szilveszter |
description | In this study, the use of electrochemistry in cell biology is extended by showing that electrochemically generated microscale pH gradients can be used to gain new insights into the regulation of cytosolic pH of normal and cancer cells. The developed procedure involves positioning a carbon fiber microelectrode into the extracellular space of adherently growing cells and setting its potential to values suitable for electrooxidation or electroreduction of water. While the electrooxidation of water decreases the pH of the solution surrounding the microelectrode (because it produces hydronium ions), the electroreduction of water increases the pH of the same solution (because it produces hydroxide ions). Fluorescence microscopy is then used to observe the impact of the electrochemically generated microscale pH gradient on the cytosolic pH of cells loaded with a fluorescent pH sensor. The obtained results indicate that electrochemically induced acid stress affects the cytosolic pH of normal cells significantly faster than that of cancer cells while electrochemically induced alkaline stress appears to have very limited impact on the cytosolic pH of both cell types. In comparison to classic experiments concerning the regulation of cytosolic pH using perfusion chambers, the developed, electrochemistry‐based, approach has the advantages of a better spatial and temporal resolution and elimination of the flow‐induced shear stress.
Changing cell surroundings by electrolysis: the use of electrochemistry in cell biology is extended by showing that electrochemically generated microscale pH gradients can be used to gain new insights into the regulation of cytosolic pH of normal and cancer cells. |
doi_str_mv | 10.1002/celc.201801558 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199015925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199015925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4248-74c2bc28ea1425b42e745b23585c112149948da0c2dea52f305650fc870ed1323</originalsourceid><addsrcrecordid>eNqFkNFLwzAQh4soOOZefQ743JmkSZc-Spk6mA5E8TGk6XXLqM1MUkb_ezMq6ptPd3C_7477kuSa4DnBmN5qaPWcYiIw4VycJRNKijzFlOTnf_rLZOb9HmNMCOaZyCdJ-64COLRsQQdn28Ebj0rlnIEabfqAbIeejHYWxkANHgWLNlVQpkPPcESrzpvtLnhkujgIO0AvsO1bFUxEbYPKIVhvW6PR4fEquWhU62H2XafJ2_3ytXxM15uHVXm3TjWjTKQLpmmlqQBFGOUVo7BgvKIZF1wTQgkrCiZqhTWtQXHaZJjnHDdaLDDUJKPZNLkZ9x6c_ezBB7m3veviSRlVFFFRQXlMzcdUfM97B408OPOh3CAJliep8iRV_kiNQDECR9PC8E9alst1-ct-AcDseow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199015925</pqid></control><display><type>article</type><title>Water Electrolysis Carried Out on Microelectrodes to Obtain New Insights into the Regulation of Cytosolic pH</title><source>Wiley Journals</source><creator>Munteanu, Raluca‐Elena ; Stănică, Luciana ; Gheorghiu, Mihaela ; Gáspár, Szilveszter</creator><creatorcontrib>Munteanu, Raluca‐Elena ; Stănică, Luciana ; Gheorghiu, Mihaela ; Gáspár, Szilveszter</creatorcontrib><description>In this study, the use of electrochemistry in cell biology is extended by showing that electrochemically generated microscale pH gradients can be used to gain new insights into the regulation of cytosolic pH of normal and cancer cells. The developed procedure involves positioning a carbon fiber microelectrode into the extracellular space of adherently growing cells and setting its potential to values suitable for electrooxidation or electroreduction of water. While the electrooxidation of water decreases the pH of the solution surrounding the microelectrode (because it produces hydronium ions), the electroreduction of water increases the pH of the same solution (because it produces hydroxide ions). Fluorescence microscopy is then used to observe the impact of the electrochemically generated microscale pH gradient on the cytosolic pH of cells loaded with a fluorescent pH sensor. The obtained results indicate that electrochemically induced acid stress affects the cytosolic pH of normal cells significantly faster than that of cancer cells while electrochemically induced alkaline stress appears to have very limited impact on the cytosolic pH of both cell types. In comparison to classic experiments concerning the regulation of cytosolic pH using perfusion chambers, the developed, electrochemistry‐based, approach has the advantages of a better spatial and temporal resolution and elimination of the flow‐induced shear stress.
Changing cell surroundings by electrolysis: the use of electrochemistry in cell biology is extended by showing that electrochemically generated microscale pH gradients can be used to gain new insights into the regulation of cytosolic pH of normal and cancer cells.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.201801558</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>Cancer ; carbon fiber microelectrode ; Carbon fibers ; cytosolic pH ; Electrochemistry ; Electrolysis ; Electrolytic cells ; Electrowinning ; extracellular pH ; Fluorescence ; Hydronium ions ; Microelectrodes ; Shear stress ; Temporal resolution ; water electrooxidation ; water electroreduction</subject><ispartof>ChemElectroChem, 2019-03, Vol.6 (6), p.1800-1807</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4248-74c2bc28ea1425b42e745b23585c112149948da0c2dea52f305650fc870ed1323</citedby><cites>FETCH-LOGICAL-c4248-74c2bc28ea1425b42e745b23585c112149948da0c2dea52f305650fc870ed1323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.201801558$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.201801558$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Munteanu, Raluca‐Elena</creatorcontrib><creatorcontrib>Stănică, Luciana</creatorcontrib><creatorcontrib>Gheorghiu, Mihaela</creatorcontrib><creatorcontrib>Gáspár, Szilveszter</creatorcontrib><title>Water Electrolysis Carried Out on Microelectrodes to Obtain New Insights into the Regulation of Cytosolic pH</title><title>ChemElectroChem</title><description>In this study, the use of electrochemistry in cell biology is extended by showing that electrochemically generated microscale pH gradients can be used to gain new insights into the regulation of cytosolic pH of normal and cancer cells. The developed procedure involves positioning a carbon fiber microelectrode into the extracellular space of adherently growing cells and setting its potential to values suitable for electrooxidation or electroreduction of water. While the electrooxidation of water decreases the pH of the solution surrounding the microelectrode (because it produces hydronium ions), the electroreduction of water increases the pH of the same solution (because it produces hydroxide ions). Fluorescence microscopy is then used to observe the impact of the electrochemically generated microscale pH gradient on the cytosolic pH of cells loaded with a fluorescent pH sensor. The obtained results indicate that electrochemically induced acid stress affects the cytosolic pH of normal cells significantly faster than that of cancer cells while electrochemically induced alkaline stress appears to have very limited impact on the cytosolic pH of both cell types. In comparison to classic experiments concerning the regulation of cytosolic pH using perfusion chambers, the developed, electrochemistry‐based, approach has the advantages of a better spatial and temporal resolution and elimination of the flow‐induced shear stress.
Changing cell surroundings by electrolysis: the use of electrochemistry in cell biology is extended by showing that electrochemically generated microscale pH gradients can be used to gain new insights into the regulation of cytosolic pH of normal and cancer cells.</description><subject>Cancer</subject><subject>carbon fiber microelectrode</subject><subject>Carbon fibers</subject><subject>cytosolic pH</subject><subject>Electrochemistry</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>Electrowinning</subject><subject>extracellular pH</subject><subject>Fluorescence</subject><subject>Hydronium ions</subject><subject>Microelectrodes</subject><subject>Shear stress</subject><subject>Temporal resolution</subject><subject>water electrooxidation</subject><subject>water electroreduction</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkNFLwzAQh4soOOZefQ743JmkSZc-Spk6mA5E8TGk6XXLqM1MUkb_ezMq6ptPd3C_7477kuSa4DnBmN5qaPWcYiIw4VycJRNKijzFlOTnf_rLZOb9HmNMCOaZyCdJ-64COLRsQQdn28Ebj0rlnIEabfqAbIeejHYWxkANHgWLNlVQpkPPcESrzpvtLnhkujgIO0AvsO1bFUxEbYPKIVhvW6PR4fEquWhU62H2XafJ2_3ytXxM15uHVXm3TjWjTKQLpmmlqQBFGOUVo7BgvKIZF1wTQgkrCiZqhTWtQXHaZJjnHDdaLDDUJKPZNLkZ9x6c_ezBB7m3veviSRlVFFFRQXlMzcdUfM97B408OPOh3CAJliep8iRV_kiNQDECR9PC8E9alst1-ct-AcDseow</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Munteanu, Raluca‐Elena</creator><creator>Stănică, Luciana</creator><creator>Gheorghiu, Mihaela</creator><creator>Gáspár, Szilveszter</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190315</creationdate><title>Water Electrolysis Carried Out on Microelectrodes to Obtain New Insights into the Regulation of Cytosolic pH</title><author>Munteanu, Raluca‐Elena ; Stănică, Luciana ; Gheorghiu, Mihaela ; Gáspár, Szilveszter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4248-74c2bc28ea1425b42e745b23585c112149948da0c2dea52f305650fc870ed1323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cancer</topic><topic>carbon fiber microelectrode</topic><topic>Carbon fibers</topic><topic>cytosolic pH</topic><topic>Electrochemistry</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>Electrowinning</topic><topic>extracellular pH</topic><topic>Fluorescence</topic><topic>Hydronium ions</topic><topic>Microelectrodes</topic><topic>Shear stress</topic><topic>Temporal resolution</topic><topic>water electrooxidation</topic><topic>water electroreduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munteanu, Raluca‐Elena</creatorcontrib><creatorcontrib>Stănică, Luciana</creatorcontrib><creatorcontrib>Gheorghiu, Mihaela</creatorcontrib><creatorcontrib>Gáspár, Szilveszter</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Munteanu, Raluca‐Elena</au><au>Stănică, Luciana</au><au>Gheorghiu, Mihaela</au><au>Gáspár, Szilveszter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water Electrolysis Carried Out on Microelectrodes to Obtain New Insights into the Regulation of Cytosolic pH</atitle><jtitle>ChemElectroChem</jtitle><date>2019-03-15</date><risdate>2019</risdate><volume>6</volume><issue>6</issue><spage>1800</spage><epage>1807</epage><pages>1800-1807</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>In this study, the use of electrochemistry in cell biology is extended by showing that electrochemically generated microscale pH gradients can be used to gain new insights into the regulation of cytosolic pH of normal and cancer cells. The developed procedure involves positioning a carbon fiber microelectrode into the extracellular space of adherently growing cells and setting its potential to values suitable for electrooxidation or electroreduction of water. While the electrooxidation of water decreases the pH of the solution surrounding the microelectrode (because it produces hydronium ions), the electroreduction of water increases the pH of the same solution (because it produces hydroxide ions). Fluorescence microscopy is then used to observe the impact of the electrochemically generated microscale pH gradient on the cytosolic pH of cells loaded with a fluorescent pH sensor. The obtained results indicate that electrochemically induced acid stress affects the cytosolic pH of normal cells significantly faster than that of cancer cells while electrochemically induced alkaline stress appears to have very limited impact on the cytosolic pH of both cell types. In comparison to classic experiments concerning the regulation of cytosolic pH using perfusion chambers, the developed, electrochemistry‐based, approach has the advantages of a better spatial and temporal resolution and elimination of the flow‐induced shear stress.
Changing cell surroundings by electrolysis: the use of electrochemistry in cell biology is extended by showing that electrochemically generated microscale pH gradients can be used to gain new insights into the regulation of cytosolic pH of normal and cancer cells.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/celc.201801558</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-0216 |
ispartof | ChemElectroChem, 2019-03, Vol.6 (6), p.1800-1807 |
issn | 2196-0216 2196-0216 |
language | eng |
recordid | cdi_proquest_journals_2199015925 |
source | Wiley Journals |
subjects | Cancer carbon fiber microelectrode Carbon fibers cytosolic pH Electrochemistry Electrolysis Electrolytic cells Electrowinning extracellular pH Fluorescence Hydronium ions Microelectrodes Shear stress Temporal resolution water electrooxidation water electroreduction |
title | Water Electrolysis Carried Out on Microelectrodes to Obtain New Insights into the Regulation of Cytosolic pH |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20Electrolysis%20Carried%20Out%20on%20Microelectrodes%20to%20Obtain%20New%20Insights%20into%20the%20Regulation%20of%20Cytosolic%20pH&rft.jtitle=ChemElectroChem&rft.au=Munteanu,%20Raluca%E2%80%90Elena&rft.date=2019-03-15&rft.volume=6&rft.issue=6&rft.spage=1800&rft.epage=1807&rft.pages=1800-1807&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.201801558&rft_dat=%3Cproquest_cross%3E2199015925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199015925&rft_id=info:pmid/&rfr_iscdi=true |