Water Electrolysis Carried Out on Microelectrodes to Obtain New Insights into the Regulation of Cytosolic pH

In this study, the use of electrochemistry in cell biology is extended by showing that electrochemically generated microscale pH gradients can be used to gain new insights into the regulation of cytosolic pH of normal and cancer cells. The developed procedure involves positioning a carbon fiber micr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemElectroChem 2019-03, Vol.6 (6), p.1800-1807
Hauptverfasser: Munteanu, Raluca‐Elena, Stănică, Luciana, Gheorghiu, Mihaela, Gáspár, Szilveszter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1807
container_issue 6
container_start_page 1800
container_title ChemElectroChem
container_volume 6
creator Munteanu, Raluca‐Elena
Stănică, Luciana
Gheorghiu, Mihaela
Gáspár, Szilveszter
description In this study, the use of electrochemistry in cell biology is extended by showing that electrochemically generated microscale pH gradients can be used to gain new insights into the regulation of cytosolic pH of normal and cancer cells. The developed procedure involves positioning a carbon fiber microelectrode into the extracellular space of adherently growing cells and setting its potential to values suitable for electrooxidation or electroreduction of water. While the electrooxidation of water decreases the pH of the solution surrounding the microelectrode (because it produces hydronium ions), the electroreduction of water increases the pH of the same solution (because it produces hydroxide ions). Fluorescence microscopy is then used to observe the impact of the electrochemically generated microscale pH gradient on the cytosolic pH of cells loaded with a fluorescent pH sensor. The obtained results indicate that electrochemically induced acid stress affects the cytosolic pH of normal cells significantly faster than that of cancer cells while electrochemically induced alkaline stress appears to have very limited impact on the cytosolic pH of both cell types. In comparison to classic experiments concerning the regulation of cytosolic pH using perfusion chambers, the developed, electrochemistry‐based, approach has the advantages of a better spatial and temporal resolution and elimination of the flow‐induced shear stress. Changing cell surroundings by electrolysis: the use of electrochemistry in cell biology is extended by showing that electrochemically generated microscale pH gradients can be used to gain new insights into the regulation of cytosolic pH of normal and cancer cells.
doi_str_mv 10.1002/celc.201801558
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199015925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199015925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4248-74c2bc28ea1425b42e745b23585c112149948da0c2dea52f305650fc870ed1323</originalsourceid><addsrcrecordid>eNqFkNFLwzAQh4soOOZefQ743JmkSZc-Spk6mA5E8TGk6XXLqM1MUkb_ezMq6ptPd3C_7477kuSa4DnBmN5qaPWcYiIw4VycJRNKijzFlOTnf_rLZOb9HmNMCOaZyCdJ-64COLRsQQdn28Ebj0rlnIEabfqAbIeejHYWxkANHgWLNlVQpkPPcESrzpvtLnhkujgIO0AvsO1bFUxEbYPKIVhvW6PR4fEquWhU62H2XafJ2_3ytXxM15uHVXm3TjWjTKQLpmmlqQBFGOUVo7BgvKIZF1wTQgkrCiZqhTWtQXHaZJjnHDdaLDDUJKPZNLkZ9x6c_ezBB7m3veviSRlVFFFRQXlMzcdUfM97B408OPOh3CAJliep8iRV_kiNQDECR9PC8E9alst1-ct-AcDseow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199015925</pqid></control><display><type>article</type><title>Water Electrolysis Carried Out on Microelectrodes to Obtain New Insights into the Regulation of Cytosolic pH</title><source>Wiley Journals</source><creator>Munteanu, Raluca‐Elena ; Stănică, Luciana ; Gheorghiu, Mihaela ; Gáspár, Szilveszter</creator><creatorcontrib>Munteanu, Raluca‐Elena ; Stănică, Luciana ; Gheorghiu, Mihaela ; Gáspár, Szilveszter</creatorcontrib><description>In this study, the use of electrochemistry in cell biology is extended by showing that electrochemically generated microscale pH gradients can be used to gain new insights into the regulation of cytosolic pH of normal and cancer cells. The developed procedure involves positioning a carbon fiber microelectrode into the extracellular space of adherently growing cells and setting its potential to values suitable for electrooxidation or electroreduction of water. While the electrooxidation of water decreases the pH of the solution surrounding the microelectrode (because it produces hydronium ions), the electroreduction of water increases the pH of the same solution (because it produces hydroxide ions). Fluorescence microscopy is then used to observe the impact of the electrochemically generated microscale pH gradient on the cytosolic pH of cells loaded with a fluorescent pH sensor. The obtained results indicate that electrochemically induced acid stress affects the cytosolic pH of normal cells significantly faster than that of cancer cells while electrochemically induced alkaline stress appears to have very limited impact on the cytosolic pH of both cell types. In comparison to classic experiments concerning the regulation of cytosolic pH using perfusion chambers, the developed, electrochemistry‐based, approach has the advantages of a better spatial and temporal resolution and elimination of the flow‐induced shear stress. Changing cell surroundings by electrolysis: the use of electrochemistry in cell biology is extended by showing that electrochemically generated microscale pH gradients can be used to gain new insights into the regulation of cytosolic pH of normal and cancer cells.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.201801558</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Cancer ; carbon fiber microelectrode ; Carbon fibers ; cytosolic pH ; Electrochemistry ; Electrolysis ; Electrolytic cells ; Electrowinning ; extracellular pH ; Fluorescence ; Hydronium ions ; Microelectrodes ; Shear stress ; Temporal resolution ; water electrooxidation ; water electroreduction</subject><ispartof>ChemElectroChem, 2019-03, Vol.6 (6), p.1800-1807</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4248-74c2bc28ea1425b42e745b23585c112149948da0c2dea52f305650fc870ed1323</citedby><cites>FETCH-LOGICAL-c4248-74c2bc28ea1425b42e745b23585c112149948da0c2dea52f305650fc870ed1323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.201801558$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.201801558$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Munteanu, Raluca‐Elena</creatorcontrib><creatorcontrib>Stănică, Luciana</creatorcontrib><creatorcontrib>Gheorghiu, Mihaela</creatorcontrib><creatorcontrib>Gáspár, Szilveszter</creatorcontrib><title>Water Electrolysis Carried Out on Microelectrodes to Obtain New Insights into the Regulation of Cytosolic pH</title><title>ChemElectroChem</title><description>In this study, the use of electrochemistry in cell biology is extended by showing that electrochemically generated microscale pH gradients can be used to gain new insights into the regulation of cytosolic pH of normal and cancer cells. The developed procedure involves positioning a carbon fiber microelectrode into the extracellular space of adherently growing cells and setting its potential to values suitable for electrooxidation or electroreduction of water. While the electrooxidation of water decreases the pH of the solution surrounding the microelectrode (because it produces hydronium ions), the electroreduction of water increases the pH of the same solution (because it produces hydroxide ions). Fluorescence microscopy is then used to observe the impact of the electrochemically generated microscale pH gradient on the cytosolic pH of cells loaded with a fluorescent pH sensor. The obtained results indicate that electrochemically induced acid stress affects the cytosolic pH of normal cells significantly faster than that of cancer cells while electrochemically induced alkaline stress appears to have very limited impact on the cytosolic pH of both cell types. In comparison to classic experiments concerning the regulation of cytosolic pH using perfusion chambers, the developed, electrochemistry‐based, approach has the advantages of a better spatial and temporal resolution and elimination of the flow‐induced shear stress. Changing cell surroundings by electrolysis: the use of electrochemistry in cell biology is extended by showing that electrochemically generated microscale pH gradients can be used to gain new insights into the regulation of cytosolic pH of normal and cancer cells.</description><subject>Cancer</subject><subject>carbon fiber microelectrode</subject><subject>Carbon fibers</subject><subject>cytosolic pH</subject><subject>Electrochemistry</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>Electrowinning</subject><subject>extracellular pH</subject><subject>Fluorescence</subject><subject>Hydronium ions</subject><subject>Microelectrodes</subject><subject>Shear stress</subject><subject>Temporal resolution</subject><subject>water electrooxidation</subject><subject>water electroreduction</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkNFLwzAQh4soOOZefQ743JmkSZc-Spk6mA5E8TGk6XXLqM1MUkb_ezMq6ptPd3C_7477kuSa4DnBmN5qaPWcYiIw4VycJRNKijzFlOTnf_rLZOb9HmNMCOaZyCdJ-64COLRsQQdn28Ebj0rlnIEabfqAbIeejHYWxkANHgWLNlVQpkPPcESrzpvtLnhkujgIO0AvsO1bFUxEbYPKIVhvW6PR4fEquWhU62H2XafJ2_3ytXxM15uHVXm3TjWjTKQLpmmlqQBFGOUVo7BgvKIZF1wTQgkrCiZqhTWtQXHaZJjnHDdaLDDUJKPZNLkZ9x6c_ezBB7m3veviSRlVFFFRQXlMzcdUfM97B408OPOh3CAJliep8iRV_kiNQDECR9PC8E9alst1-ct-AcDseow</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Munteanu, Raluca‐Elena</creator><creator>Stănică, Luciana</creator><creator>Gheorghiu, Mihaela</creator><creator>Gáspár, Szilveszter</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190315</creationdate><title>Water Electrolysis Carried Out on Microelectrodes to Obtain New Insights into the Regulation of Cytosolic pH</title><author>Munteanu, Raluca‐Elena ; Stănică, Luciana ; Gheorghiu, Mihaela ; Gáspár, Szilveszter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4248-74c2bc28ea1425b42e745b23585c112149948da0c2dea52f305650fc870ed1323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cancer</topic><topic>carbon fiber microelectrode</topic><topic>Carbon fibers</topic><topic>cytosolic pH</topic><topic>Electrochemistry</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>Electrowinning</topic><topic>extracellular pH</topic><topic>Fluorescence</topic><topic>Hydronium ions</topic><topic>Microelectrodes</topic><topic>Shear stress</topic><topic>Temporal resolution</topic><topic>water electrooxidation</topic><topic>water electroreduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munteanu, Raluca‐Elena</creatorcontrib><creatorcontrib>Stănică, Luciana</creatorcontrib><creatorcontrib>Gheorghiu, Mihaela</creatorcontrib><creatorcontrib>Gáspár, Szilveszter</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Munteanu, Raluca‐Elena</au><au>Stănică, Luciana</au><au>Gheorghiu, Mihaela</au><au>Gáspár, Szilveszter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water Electrolysis Carried Out on Microelectrodes to Obtain New Insights into the Regulation of Cytosolic pH</atitle><jtitle>ChemElectroChem</jtitle><date>2019-03-15</date><risdate>2019</risdate><volume>6</volume><issue>6</issue><spage>1800</spage><epage>1807</epage><pages>1800-1807</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>In this study, the use of electrochemistry in cell biology is extended by showing that electrochemically generated microscale pH gradients can be used to gain new insights into the regulation of cytosolic pH of normal and cancer cells. The developed procedure involves positioning a carbon fiber microelectrode into the extracellular space of adherently growing cells and setting its potential to values suitable for electrooxidation or electroreduction of water. While the electrooxidation of water decreases the pH of the solution surrounding the microelectrode (because it produces hydronium ions), the electroreduction of water increases the pH of the same solution (because it produces hydroxide ions). Fluorescence microscopy is then used to observe the impact of the electrochemically generated microscale pH gradient on the cytosolic pH of cells loaded with a fluorescent pH sensor. The obtained results indicate that electrochemically induced acid stress affects the cytosolic pH of normal cells significantly faster than that of cancer cells while electrochemically induced alkaline stress appears to have very limited impact on the cytosolic pH of both cell types. In comparison to classic experiments concerning the regulation of cytosolic pH using perfusion chambers, the developed, electrochemistry‐based, approach has the advantages of a better spatial and temporal resolution and elimination of the flow‐induced shear stress. Changing cell surroundings by electrolysis: the use of electrochemistry in cell biology is extended by showing that electrochemically generated microscale pH gradients can be used to gain new insights into the regulation of cytosolic pH of normal and cancer cells.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/celc.201801558</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2196-0216
ispartof ChemElectroChem, 2019-03, Vol.6 (6), p.1800-1807
issn 2196-0216
2196-0216
language eng
recordid cdi_proquest_journals_2199015925
source Wiley Journals
subjects Cancer
carbon fiber microelectrode
Carbon fibers
cytosolic pH
Electrochemistry
Electrolysis
Electrolytic cells
Electrowinning
extracellular pH
Fluorescence
Hydronium ions
Microelectrodes
Shear stress
Temporal resolution
water electrooxidation
water electroreduction
title Water Electrolysis Carried Out on Microelectrodes to Obtain New Insights into the Regulation of Cytosolic pH
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20Electrolysis%20Carried%20Out%20on%20Microelectrodes%20to%20Obtain%20New%20Insights%20into%20the%20Regulation%20of%20Cytosolic%20pH&rft.jtitle=ChemElectroChem&rft.au=Munteanu,%20Raluca%E2%80%90Elena&rft.date=2019-03-15&rft.volume=6&rft.issue=6&rft.spage=1800&rft.epage=1807&rft.pages=1800-1807&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.201801558&rft_dat=%3Cproquest_cross%3E2199015925%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199015925&rft_id=info:pmid/&rfr_iscdi=true