Combined Injection Molding Technology for Dynamically Stressed Multi-Material Coupling Elements
The manufacturing of high load components in automotive and mechanical engineering demands for an increased usage of combined plastics processing procedures. In practice, full plastic hybrid components are produced in a series of individual processes such as thermoforming or injection molding. The c...
Gespeichert in:
Veröffentlicht in: | Key engineering materials 2017-07, Vol.744, p.322-326 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 326 |
---|---|
container_issue | |
container_start_page | 322 |
container_title | Key engineering materials |
container_volume | 744 |
creator | Timmel, Tristan Osiecki, Tomasz Hackert, Alexander Gerstenberger, Colin Kroll, Lothar |
description | The manufacturing of high load components in automotive and mechanical engineering demands for an increased usage of combined plastics processing procedures. In practice, full plastic hybrid components are produced in a series of individual processes such as thermoforming or injection molding. The constructive implementation has often only material-substituting character wherein the high potential for lightweight anisotropic fiber composites is exploited only to a limited extent. Based on the application of a coupling brace in a vehicle, a new component design for function-integrated interface elements is enabled by an integrated injection molding technology. The targeted transfer of high local stresses by load-bearing insert elements regarding contoured metal sheets or Fiber Reinforced Thermoplastic Composites (TP-FRC) semi-finished products with endless fiber reinforcement enables efficient dimensioning of components. This fusion of technologies to a Multi Material Design (MMD) form the basis for novel weight-optimized, as well as cost-effective applications and lead to a high bending stiffness and high strength of structures. The composite strength of MMD components is increased by a variation and optimization of the thermoplastic/TP-FRC respectively thermoplastic/metal-interfaces. This objective will be achieved by highly efficient and integrated process flows and by the new entire construction of the component. |
doi_str_mv | 10.4028/www.scientific.net/KEM.744.322 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2198656884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2198656884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2712-b9a8081ebfcb06274b8b6dcd68478ba62288cfb383ec0198dc4f31856b56914f3</originalsourceid><addsrcrecordid>eNqNkFFLwzAUhYsoOKf_oSD41i5J2zR9EaVOHW744HwOSZrOjDSZScrYvzcyYa8-3fNwzrn3fklyB0FeAkRm-_0-90JJE1SvRG5kmL3NV3ldlnmB0FkygRijrKmb6jxqAIusIQhfJlfebwEoIIHVJKGtHbgysksXZitFUNakK6s7ZTbpWoovY7XdHNLeuvTpYNigBNP6kH4EJ72PqdWog8pWLEinmE5bO-70b3au5RAv89fJRc-0lzd_c5p8Ps_X7Wu2fH9ZtI_LTKAaoow3jAACJe8FBxjVJSccd6LDpKwJZxghQkTPC1JIAWBDOlH28YMK8wo3MOppcnvs3Tn7PUof6NaOzsSVFEU_rjAhZXTdH13CWe-d7OnOqYG5A4WA_kKlESo9QaURKo1QaYRKI9RY8HAsCI4ZHyKg055_VvwA_imJ9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2198656884</pqid></control><display><type>article</type><title>Combined Injection Molding Technology for Dynamically Stressed Multi-Material Coupling Elements</title><source>Scientific.net Journals</source><creator>Timmel, Tristan ; Osiecki, Tomasz ; Hackert, Alexander ; Gerstenberger, Colin ; Kroll, Lothar</creator><creatorcontrib>Timmel, Tristan ; Osiecki, Tomasz ; Hackert, Alexander ; Gerstenberger, Colin ; Kroll, Lothar</creatorcontrib><description>The manufacturing of high load components in automotive and mechanical engineering demands for an increased usage of combined plastics processing procedures. In practice, full plastic hybrid components are produced in a series of individual processes such as thermoforming or injection molding. The constructive implementation has often only material-substituting character wherein the high potential for lightweight anisotropic fiber composites is exploited only to a limited extent. Based on the application of a coupling brace in a vehicle, a new component design for function-integrated interface elements is enabled by an integrated injection molding technology. The targeted transfer of high local stresses by load-bearing insert elements regarding contoured metal sheets or Fiber Reinforced Thermoplastic Composites (TP-FRC) semi-finished products with endless fiber reinforcement enables efficient dimensioning of components. This fusion of technologies to a Multi Material Design (MMD) form the basis for novel weight-optimized, as well as cost-effective applications and lead to a high bending stiffness and high strength of structures. The composite strength of MMD components is increased by a variation and optimization of the thermoplastic/TP-FRC respectively thermoplastic/metal-interfaces. This objective will be achieved by highly efficient and integrated process flows and by the new entire construction of the component.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.744.322</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Automotive engineering ; Automotive parts ; Bend strength ; Coupling ; Fiber composites ; Fiber reinforced polymers ; Fiber reinforcement ; Fuel consumption ; Injection molding ; Load bearing elements ; Mechanical engineering ; Metal sheets ; Optimization ; Polymer matrix composites ; Polymers ; Stiffness ; Technology transfer ; Thermoforming ; Weight</subject><ispartof>Key engineering materials, 2017-07, Vol.744, p.322-326</ispartof><rights>2017 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jul 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2712-b9a8081ebfcb06274b8b6dcd68478ba62288cfb383ec0198dc4f31856b56914f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4466?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Timmel, Tristan</creatorcontrib><creatorcontrib>Osiecki, Tomasz</creatorcontrib><creatorcontrib>Hackert, Alexander</creatorcontrib><creatorcontrib>Gerstenberger, Colin</creatorcontrib><creatorcontrib>Kroll, Lothar</creatorcontrib><title>Combined Injection Molding Technology for Dynamically Stressed Multi-Material Coupling Elements</title><title>Key engineering materials</title><description>The manufacturing of high load components in automotive and mechanical engineering demands for an increased usage of combined plastics processing procedures. In practice, full plastic hybrid components are produced in a series of individual processes such as thermoforming or injection molding. The constructive implementation has often only material-substituting character wherein the high potential for lightweight anisotropic fiber composites is exploited only to a limited extent. Based on the application of a coupling brace in a vehicle, a new component design for function-integrated interface elements is enabled by an integrated injection molding technology. The targeted transfer of high local stresses by load-bearing insert elements regarding contoured metal sheets or Fiber Reinforced Thermoplastic Composites (TP-FRC) semi-finished products with endless fiber reinforcement enables efficient dimensioning of components. This fusion of technologies to a Multi Material Design (MMD) form the basis for novel weight-optimized, as well as cost-effective applications and lead to a high bending stiffness and high strength of structures. The composite strength of MMD components is increased by a variation and optimization of the thermoplastic/TP-FRC respectively thermoplastic/metal-interfaces. This objective will be achieved by highly efficient and integrated process flows and by the new entire construction of the component.</description><subject>Automotive engineering</subject><subject>Automotive parts</subject><subject>Bend strength</subject><subject>Coupling</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Fiber reinforcement</subject><subject>Fuel consumption</subject><subject>Injection molding</subject><subject>Load bearing elements</subject><subject>Mechanical engineering</subject><subject>Metal sheets</subject><subject>Optimization</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Stiffness</subject><subject>Technology transfer</subject><subject>Thermoforming</subject><subject>Weight</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkFFLwzAUhYsoOKf_oSD41i5J2zR9EaVOHW744HwOSZrOjDSZScrYvzcyYa8-3fNwzrn3fklyB0FeAkRm-_0-90JJE1SvRG5kmL3NV3ldlnmB0FkygRijrKmb6jxqAIusIQhfJlfebwEoIIHVJKGtHbgysksXZitFUNakK6s7ZTbpWoovY7XdHNLeuvTpYNigBNP6kH4EJ72PqdWog8pWLEinmE5bO-70b3au5RAv89fJRc-0lzd_c5p8Ps_X7Wu2fH9ZtI_LTKAaoow3jAACJe8FBxjVJSccd6LDpKwJZxghQkTPC1JIAWBDOlH28YMK8wo3MOppcnvs3Tn7PUof6NaOzsSVFEU_rjAhZXTdH13CWe-d7OnOqYG5A4WA_kKlESo9QaURKo1QaYRKI9RY8HAsCI4ZHyKg055_VvwA_imJ9g</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Timmel, Tristan</creator><creator>Osiecki, Tomasz</creator><creator>Hackert, Alexander</creator><creator>Gerstenberger, Colin</creator><creator>Kroll, Lothar</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170701</creationdate><title>Combined Injection Molding Technology for Dynamically Stressed Multi-Material Coupling Elements</title><author>Timmel, Tristan ; Osiecki, Tomasz ; Hackert, Alexander ; Gerstenberger, Colin ; Kroll, Lothar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2712-b9a8081ebfcb06274b8b6dcd68478ba62288cfb383ec0198dc4f31856b56914f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automotive engineering</topic><topic>Automotive parts</topic><topic>Bend strength</topic><topic>Coupling</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Fiber reinforcement</topic><topic>Fuel consumption</topic><topic>Injection molding</topic><topic>Load bearing elements</topic><topic>Mechanical engineering</topic><topic>Metal sheets</topic><topic>Optimization</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Stiffness</topic><topic>Technology transfer</topic><topic>Thermoforming</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timmel, Tristan</creatorcontrib><creatorcontrib>Osiecki, Tomasz</creatorcontrib><creatorcontrib>Hackert, Alexander</creatorcontrib><creatorcontrib>Gerstenberger, Colin</creatorcontrib><creatorcontrib>Kroll, Lothar</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timmel, Tristan</au><au>Osiecki, Tomasz</au><au>Hackert, Alexander</au><au>Gerstenberger, Colin</au><au>Kroll, Lothar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined Injection Molding Technology for Dynamically Stressed Multi-Material Coupling Elements</atitle><jtitle>Key engineering materials</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>744</volume><spage>322</spage><epage>326</epage><pages>322-326</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>The manufacturing of high load components in automotive and mechanical engineering demands for an increased usage of combined plastics processing procedures. In practice, full plastic hybrid components are produced in a series of individual processes such as thermoforming or injection molding. The constructive implementation has often only material-substituting character wherein the high potential for lightweight anisotropic fiber composites is exploited only to a limited extent. Based on the application of a coupling brace in a vehicle, a new component design for function-integrated interface elements is enabled by an integrated injection molding technology. The targeted transfer of high local stresses by load-bearing insert elements regarding contoured metal sheets or Fiber Reinforced Thermoplastic Composites (TP-FRC) semi-finished products with endless fiber reinforcement enables efficient dimensioning of components. This fusion of technologies to a Multi Material Design (MMD) form the basis for novel weight-optimized, as well as cost-effective applications and lead to a high bending stiffness and high strength of structures. The composite strength of MMD components is increased by a variation and optimization of the thermoplastic/TP-FRC respectively thermoplastic/metal-interfaces. This objective will be achieved by highly efficient and integrated process flows and by the new entire construction of the component.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.744.322</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1013-9826 |
ispartof | Key engineering materials, 2017-07, Vol.744, p.322-326 |
issn | 1013-9826 1662-9795 1662-9795 |
language | eng |
recordid | cdi_proquest_journals_2198656884 |
source | Scientific.net Journals |
subjects | Automotive engineering Automotive parts Bend strength Coupling Fiber composites Fiber reinforced polymers Fiber reinforcement Fuel consumption Injection molding Load bearing elements Mechanical engineering Metal sheets Optimization Polymer matrix composites Polymers Stiffness Technology transfer Thermoforming Weight |
title | Combined Injection Molding Technology for Dynamically Stressed Multi-Material Coupling Elements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20Injection%20Molding%20Technology%20for%20Dynamically%20Stressed%20Multi-Material%20Coupling%20Elements&rft.jtitle=Key%20engineering%20materials&rft.au=Timmel,%20Tristan&rft.date=2017-07-01&rft.volume=744&rft.spage=322&rft.epage=326&rft.pages=322-326&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.744.322&rft_dat=%3Cproquest_cross%3E2198656884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2198656884&rft_id=info:pmid/&rfr_iscdi=true |