Combined Injection Molding Technology for Dynamically Stressed Multi-Material Coupling Elements

The manufacturing of high load components in automotive and mechanical engineering demands for an increased usage of combined plastics processing procedures. In practice, full plastic hybrid components are produced in a series of individual processes such as thermoforming or injection molding. The c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2017-07, Vol.744, p.322-326
Hauptverfasser: Timmel, Tristan, Osiecki, Tomasz, Hackert, Alexander, Gerstenberger, Colin, Kroll, Lothar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 326
container_issue
container_start_page 322
container_title Key engineering materials
container_volume 744
creator Timmel, Tristan
Osiecki, Tomasz
Hackert, Alexander
Gerstenberger, Colin
Kroll, Lothar
description The manufacturing of high load components in automotive and mechanical engineering demands for an increased usage of combined plastics processing procedures. In practice, full plastic hybrid components are produced in a series of individual processes such as thermoforming or injection molding. The constructive implementation has often only material-substituting character wherein the high potential for lightweight anisotropic fiber composites is exploited only to a limited extent. Based on the application of a coupling brace in a vehicle, a new component design for function-integrated interface elements is enabled by an integrated injection molding technology. The targeted transfer of high local stresses by load-bearing insert elements regarding contoured metal sheets or Fiber Reinforced Thermoplastic Composites (TP-FRC) semi-finished products with endless fiber reinforcement enables efficient dimensioning of components. This fusion of technologies to a Multi Material Design (MMD) form the basis for novel weight-optimized, as well as cost-effective applications and lead to a high bending stiffness and high strength of structures. The composite strength of MMD components is increased by a variation and optimization of the thermoplastic/TP-FRC respectively thermoplastic/metal-interfaces. This objective will be achieved by highly efficient and integrated process flows and by the new entire construction of the component.
doi_str_mv 10.4028/www.scientific.net/KEM.744.322
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2198656884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2198656884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2712-b9a8081ebfcb06274b8b6dcd68478ba62288cfb383ec0198dc4f31856b56914f3</originalsourceid><addsrcrecordid>eNqNkFFLwzAUhYsoOKf_oSD41i5J2zR9EaVOHW744HwOSZrOjDSZScrYvzcyYa8-3fNwzrn3fklyB0FeAkRm-_0-90JJE1SvRG5kmL3NV3ldlnmB0FkygRijrKmb6jxqAIusIQhfJlfebwEoIIHVJKGtHbgysksXZitFUNakK6s7ZTbpWoovY7XdHNLeuvTpYNigBNP6kH4EJ72PqdWog8pWLEinmE5bO-70b3au5RAv89fJRc-0lzd_c5p8Ps_X7Wu2fH9ZtI_LTKAaoow3jAACJe8FBxjVJSccd6LDpKwJZxghQkTPC1JIAWBDOlH28YMK8wo3MOppcnvs3Tn7PUof6NaOzsSVFEU_rjAhZXTdH13CWe-d7OnOqYG5A4WA_kKlESo9QaURKo1QaYRKI9RY8HAsCI4ZHyKg055_VvwA_imJ9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2198656884</pqid></control><display><type>article</type><title>Combined Injection Molding Technology for Dynamically Stressed Multi-Material Coupling Elements</title><source>Scientific.net Journals</source><creator>Timmel, Tristan ; Osiecki, Tomasz ; Hackert, Alexander ; Gerstenberger, Colin ; Kroll, Lothar</creator><creatorcontrib>Timmel, Tristan ; Osiecki, Tomasz ; Hackert, Alexander ; Gerstenberger, Colin ; Kroll, Lothar</creatorcontrib><description>The manufacturing of high load components in automotive and mechanical engineering demands for an increased usage of combined plastics processing procedures. In practice, full plastic hybrid components are produced in a series of individual processes such as thermoforming or injection molding. The constructive implementation has often only material-substituting character wherein the high potential for lightweight anisotropic fiber composites is exploited only to a limited extent. Based on the application of a coupling brace in a vehicle, a new component design for function-integrated interface elements is enabled by an integrated injection molding technology. The targeted transfer of high local stresses by load-bearing insert elements regarding contoured metal sheets or Fiber Reinforced Thermoplastic Composites (TP-FRC) semi-finished products with endless fiber reinforcement enables efficient dimensioning of components. This fusion of technologies to a Multi Material Design (MMD) form the basis for novel weight-optimized, as well as cost-effective applications and lead to a high bending stiffness and high strength of structures. The composite strength of MMD components is increased by a variation and optimization of the thermoplastic/TP-FRC respectively thermoplastic/metal-interfaces. This objective will be achieved by highly efficient and integrated process flows and by the new entire construction of the component.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.744.322</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Automotive engineering ; Automotive parts ; Bend strength ; Coupling ; Fiber composites ; Fiber reinforced polymers ; Fiber reinforcement ; Fuel consumption ; Injection molding ; Load bearing elements ; Mechanical engineering ; Metal sheets ; Optimization ; Polymer matrix composites ; Polymers ; Stiffness ; Technology transfer ; Thermoforming ; Weight</subject><ispartof>Key engineering materials, 2017-07, Vol.744, p.322-326</ispartof><rights>2017 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jul 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2712-b9a8081ebfcb06274b8b6dcd68478ba62288cfb383ec0198dc4f31856b56914f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4466?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Timmel, Tristan</creatorcontrib><creatorcontrib>Osiecki, Tomasz</creatorcontrib><creatorcontrib>Hackert, Alexander</creatorcontrib><creatorcontrib>Gerstenberger, Colin</creatorcontrib><creatorcontrib>Kroll, Lothar</creatorcontrib><title>Combined Injection Molding Technology for Dynamically Stressed Multi-Material Coupling Elements</title><title>Key engineering materials</title><description>The manufacturing of high load components in automotive and mechanical engineering demands for an increased usage of combined plastics processing procedures. In practice, full plastic hybrid components are produced in a series of individual processes such as thermoforming or injection molding. The constructive implementation has often only material-substituting character wherein the high potential for lightweight anisotropic fiber composites is exploited only to a limited extent. Based on the application of a coupling brace in a vehicle, a new component design for function-integrated interface elements is enabled by an integrated injection molding technology. The targeted transfer of high local stresses by load-bearing insert elements regarding contoured metal sheets or Fiber Reinforced Thermoplastic Composites (TP-FRC) semi-finished products with endless fiber reinforcement enables efficient dimensioning of components. This fusion of technologies to a Multi Material Design (MMD) form the basis for novel weight-optimized, as well as cost-effective applications and lead to a high bending stiffness and high strength of structures. The composite strength of MMD components is increased by a variation and optimization of the thermoplastic/TP-FRC respectively thermoplastic/metal-interfaces. This objective will be achieved by highly efficient and integrated process flows and by the new entire construction of the component.</description><subject>Automotive engineering</subject><subject>Automotive parts</subject><subject>Bend strength</subject><subject>Coupling</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Fiber reinforcement</subject><subject>Fuel consumption</subject><subject>Injection molding</subject><subject>Load bearing elements</subject><subject>Mechanical engineering</subject><subject>Metal sheets</subject><subject>Optimization</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Stiffness</subject><subject>Technology transfer</subject><subject>Thermoforming</subject><subject>Weight</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkFFLwzAUhYsoOKf_oSD41i5J2zR9EaVOHW744HwOSZrOjDSZScrYvzcyYa8-3fNwzrn3fklyB0FeAkRm-_0-90JJE1SvRG5kmL3NV3ldlnmB0FkygRijrKmb6jxqAIusIQhfJlfebwEoIIHVJKGtHbgysksXZitFUNakK6s7ZTbpWoovY7XdHNLeuvTpYNigBNP6kH4EJ72PqdWog8pWLEinmE5bO-70b3au5RAv89fJRc-0lzd_c5p8Ps_X7Wu2fH9ZtI_LTKAaoow3jAACJe8FBxjVJSccd6LDpKwJZxghQkTPC1JIAWBDOlH28YMK8wo3MOppcnvs3Tn7PUof6NaOzsSVFEU_rjAhZXTdH13CWe-d7OnOqYG5A4WA_kKlESo9QaURKo1QaYRKI9RY8HAsCI4ZHyKg055_VvwA_imJ9g</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Timmel, Tristan</creator><creator>Osiecki, Tomasz</creator><creator>Hackert, Alexander</creator><creator>Gerstenberger, Colin</creator><creator>Kroll, Lothar</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170701</creationdate><title>Combined Injection Molding Technology for Dynamically Stressed Multi-Material Coupling Elements</title><author>Timmel, Tristan ; Osiecki, Tomasz ; Hackert, Alexander ; Gerstenberger, Colin ; Kroll, Lothar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2712-b9a8081ebfcb06274b8b6dcd68478ba62288cfb383ec0198dc4f31856b56914f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automotive engineering</topic><topic>Automotive parts</topic><topic>Bend strength</topic><topic>Coupling</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Fiber reinforcement</topic><topic>Fuel consumption</topic><topic>Injection molding</topic><topic>Load bearing elements</topic><topic>Mechanical engineering</topic><topic>Metal sheets</topic><topic>Optimization</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Stiffness</topic><topic>Technology transfer</topic><topic>Thermoforming</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timmel, Tristan</creatorcontrib><creatorcontrib>Osiecki, Tomasz</creatorcontrib><creatorcontrib>Hackert, Alexander</creatorcontrib><creatorcontrib>Gerstenberger, Colin</creatorcontrib><creatorcontrib>Kroll, Lothar</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timmel, Tristan</au><au>Osiecki, Tomasz</au><au>Hackert, Alexander</au><au>Gerstenberger, Colin</au><au>Kroll, Lothar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined Injection Molding Technology for Dynamically Stressed Multi-Material Coupling Elements</atitle><jtitle>Key engineering materials</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>744</volume><spage>322</spage><epage>326</epage><pages>322-326</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>The manufacturing of high load components in automotive and mechanical engineering demands for an increased usage of combined plastics processing procedures. In practice, full plastic hybrid components are produced in a series of individual processes such as thermoforming or injection molding. The constructive implementation has often only material-substituting character wherein the high potential for lightweight anisotropic fiber composites is exploited only to a limited extent. Based on the application of a coupling brace in a vehicle, a new component design for function-integrated interface elements is enabled by an integrated injection molding technology. The targeted transfer of high local stresses by load-bearing insert elements regarding contoured metal sheets or Fiber Reinforced Thermoplastic Composites (TP-FRC) semi-finished products with endless fiber reinforcement enables efficient dimensioning of components. This fusion of technologies to a Multi Material Design (MMD) form the basis for novel weight-optimized, as well as cost-effective applications and lead to a high bending stiffness and high strength of structures. The composite strength of MMD components is increased by a variation and optimization of the thermoplastic/TP-FRC respectively thermoplastic/metal-interfaces. This objective will be achieved by highly efficient and integrated process flows and by the new entire construction of the component.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.744.322</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1013-9826
ispartof Key engineering materials, 2017-07, Vol.744, p.322-326
issn 1013-9826
1662-9795
1662-9795
language eng
recordid cdi_proquest_journals_2198656884
source Scientific.net Journals
subjects Automotive engineering
Automotive parts
Bend strength
Coupling
Fiber composites
Fiber reinforced polymers
Fiber reinforcement
Fuel consumption
Injection molding
Load bearing elements
Mechanical engineering
Metal sheets
Optimization
Polymer matrix composites
Polymers
Stiffness
Technology transfer
Thermoforming
Weight
title Combined Injection Molding Technology for Dynamically Stressed Multi-Material Coupling Elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A28%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20Injection%20Molding%20Technology%20for%20Dynamically%20Stressed%20Multi-Material%20Coupling%20Elements&rft.jtitle=Key%20engineering%20materials&rft.au=Timmel,%20Tristan&rft.date=2017-07-01&rft.volume=744&rft.spage=322&rft.epage=326&rft.pages=322-326&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.744.322&rft_dat=%3Cproquest_cross%3E2198656884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2198656884&rft_id=info:pmid/&rfr_iscdi=true