On Joint Functional Calculus for Ritt Operators
In this paper, we study joint functional calculus for commuting n -tuple of Ritt operators. We provide an equivalent characterisation of boundedness for joint functional calculus for Ritt operators on L p -spaces, 1 < p < ∞ , where each of them admits a bounded functional calculus. We also inv...
Gespeichert in:
Veröffentlicht in: | Integral equations and operator theory 2019-04, Vol.91 (2), p.1-18, Article 14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | Integral equations and operator theory |
container_volume | 91 |
creator | Mohanty, Parasar Ray, Samya Kumar |
description | In this paper, we study joint functional calculus for commuting
n
-tuple of Ritt operators. We provide an equivalent characterisation of boundedness for joint functional calculus for Ritt operators on
L
p
-spaces,
1
<
p
<
∞
,
where each of them admits a bounded functional calculus. We also investigate joint similarity problem for commuting
n
-tuple of Ritt operators. We get our results by proving a suitable multivariable transfer principle between sectorial and Ritt operators as well as an appropriate joint dilation result in a general setting. |
doi_str_mv | 10.1007/s00020-019-2513-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2198631488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2198631488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-8989067199b18083cf3fac9aa5e32048003244366a15ceaa9d7fbca8d4f210ba3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4G3B89qZZHeTHKVYqxQKouAtZNNEtqybmmQPvr2pK3jyNDB8_z_DR8g1wi0C8EUEAAoloCxpjazkJ2SGVd4IKeQpmQHjomwovJ2Tixj3GaacNjOy2A7Fk--GVKzGwaTOD7ovlro3Yz_GwvlQPHcpFduDDTr5EC_JmdN9tFe_c05eV_cvy3W52T48Lu82pWGI6ecqNBylbFGAYMYxp43UuraMQiUAGK0q1jQaa2O1ljvuWqPFrnIUodVsTm6m3kPwn6ONSe39GPJzUVGUomFYCZEpnCgTfIzBOnUI3YcOXwpBHb2oyYvKXtTRi-I5Q6dMzOzwbsNf8_-hb9Q7Y3s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2198631488</pqid></control><display><type>article</type><title>On Joint Functional Calculus for Ritt Operators</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mohanty, Parasar ; Ray, Samya Kumar</creator><creatorcontrib>Mohanty, Parasar ; Ray, Samya Kumar</creatorcontrib><description>In this paper, we study joint functional calculus for commuting
n
-tuple of Ritt operators. We provide an equivalent characterisation of boundedness for joint functional calculus for Ritt operators on
L
p
-spaces,
1
<
p
<
∞
,
where each of them admits a bounded functional calculus. We also investigate joint similarity problem for commuting
n
-tuple of Ritt operators. We get our results by proving a suitable multivariable transfer principle between sectorial and Ritt operators as well as an appropriate joint dilation result in a general setting.</description><identifier>ISSN: 0378-620X</identifier><identifier>EISSN: 1420-8989</identifier><identifier>DOI: 10.1007/s00020-019-2513-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Calculus ; Mathematics ; Mathematics and Statistics ; Operators</subject><ispartof>Integral equations and operator theory, 2019-04, Vol.91 (2), p.1-18, Article 14</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-8989067199b18083cf3fac9aa5e32048003244366a15ceaa9d7fbca8d4f210ba3</cites><orcidid>0000-0002-5701-5460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00020-019-2513-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00020-019-2513-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Mohanty, Parasar</creatorcontrib><creatorcontrib>Ray, Samya Kumar</creatorcontrib><title>On Joint Functional Calculus for Ritt Operators</title><title>Integral equations and operator theory</title><addtitle>Integr. Equ. Oper. Theory</addtitle><description>In this paper, we study joint functional calculus for commuting
n
-tuple of Ritt operators. We provide an equivalent characterisation of boundedness for joint functional calculus for Ritt operators on
L
p
-spaces,
1
<
p
<
∞
,
where each of them admits a bounded functional calculus. We also investigate joint similarity problem for commuting
n
-tuple of Ritt operators. We get our results by proving a suitable multivariable transfer principle between sectorial and Ritt operators as well as an appropriate joint dilation result in a general setting.</description><subject>Analysis</subject><subject>Calculus</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators</subject><issn>0378-620X</issn><issn>1420-8989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsP4G3B89qZZHeTHKVYqxQKouAtZNNEtqybmmQPvr2pK3jyNDB8_z_DR8g1wi0C8EUEAAoloCxpjazkJ2SGVd4IKeQpmQHjomwovJ2Tixj3GaacNjOy2A7Fk--GVKzGwaTOD7ovlro3Yz_GwvlQPHcpFduDDTr5EC_JmdN9tFe_c05eV_cvy3W52T48Lu82pWGI6ecqNBylbFGAYMYxp43UuraMQiUAGK0q1jQaa2O1ljvuWqPFrnIUodVsTm6m3kPwn6ONSe39GPJzUVGUomFYCZEpnCgTfIzBOnUI3YcOXwpBHb2oyYvKXtTRi-I5Q6dMzOzwbsNf8_-hb9Q7Y3s</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Mohanty, Parasar</creator><creator>Ray, Samya Kumar</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5701-5460</orcidid></search><sort><creationdate>20190401</creationdate><title>On Joint Functional Calculus for Ritt Operators</title><author>Mohanty, Parasar ; Ray, Samya Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-8989067199b18083cf3fac9aa5e32048003244366a15ceaa9d7fbca8d4f210ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Calculus</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohanty, Parasar</creatorcontrib><creatorcontrib>Ray, Samya Kumar</creatorcontrib><collection>CrossRef</collection><jtitle>Integral equations and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohanty, Parasar</au><au>Ray, Samya Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Joint Functional Calculus for Ritt Operators</atitle><jtitle>Integral equations and operator theory</jtitle><stitle>Integr. Equ. Oper. Theory</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>91</volume><issue>2</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><artnum>14</artnum><issn>0378-620X</issn><eissn>1420-8989</eissn><abstract>In this paper, we study joint functional calculus for commuting
n
-tuple of Ritt operators. We provide an equivalent characterisation of boundedness for joint functional calculus for Ritt operators on
L
p
-spaces,
1
<
p
<
∞
,
where each of them admits a bounded functional calculus. We also investigate joint similarity problem for commuting
n
-tuple of Ritt operators. We get our results by proving a suitable multivariable transfer principle between sectorial and Ritt operators as well as an appropriate joint dilation result in a general setting.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00020-019-2513-7</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5701-5460</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-620X |
ispartof | Integral equations and operator theory, 2019-04, Vol.91 (2), p.1-18, Article 14 |
issn | 0378-620X 1420-8989 |
language | eng |
recordid | cdi_proquest_journals_2198631488 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Calculus Mathematics Mathematics and Statistics Operators |
title | On Joint Functional Calculus for Ritt Operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Joint%20Functional%20Calculus%20for%20Ritt%20Operators&rft.jtitle=Integral%20equations%20and%20operator%20theory&rft.au=Mohanty,%20Parasar&rft.date=2019-04-01&rft.volume=91&rft.issue=2&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.artnum=14&rft.issn=0378-620X&rft.eissn=1420-8989&rft_id=info:doi/10.1007/s00020-019-2513-7&rft_dat=%3Cproquest_cross%3E2198631488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2198631488&rft_id=info:pmid/&rfr_iscdi=true |