Magneto-Nanofluid Dynamics in Convergent-Divergent Channel and its Inherent Irreversibility

The effects of Cu-nanoparticles on the entropy generation of steady magnetohydrodynamic incompressible flow with viscous dissipation and Joule heating through convergent-divergent channel are analysed in this paper. The basic nonlinear partial differential equations are transformed into a system of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum Defect and diffusion forum, 2017-09, Vol.377, p.95-110
Hauptverfasser: Alam, Md. Sarwar, Khan, Md. Abdul Hakim, Makinde, Oluwole Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue
container_start_page 95
container_title Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum
container_volume 377
creator Alam, Md. Sarwar
Khan, Md. Abdul Hakim
Makinde, Oluwole Daniel
description The effects of Cu-nanoparticles on the entropy generation of steady magnetohydrodynamic incompressible flow with viscous dissipation and Joule heating through convergent-divergent channel are analysed in this paper. The basic nonlinear partial differential equations are transformed into a system of coupled ordinary differential equations using suitable transformations which are then solved using power series with Hermite- Padé approximation technique. The velocity profiles, temperature distributions, entropy generation rates, Bejan number as well as the rate of heat transfer at the wall are presented in convergent-divergent channels for various values of nanoparticles solid volume fraction, Eckert number, Reynolds number and channel angle. A stability analysis has been performed for the shear stress which signifies that the lower solution branch is stable and physically realizable, whereas the upper solution branch is unstable. It is interesting to remark that the entropy generation of the system increases at the two walls as well as the heat transfer irreversibility is dominant there whereas the fluid friction irreversibility is dominant along the centreline of the channel.
doi_str_mv 10.4028/www.scientific.net/DDF.377.95
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2198628439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2198628439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2685-f2ce389a5df75d6937df0d37113e17e6ffd1edf13995c24d237f1412a92295ca3</originalsourceid><addsrcrecordid>eNqNkEtLw0AUhQdRsFb_Q0BcJp1HksksRCSxWqi60ZWLYZxHOyWd1JnE0n_vlBa6dXUP955zD3wA3CGY5RBXk-12mwVpteutsTJzup80zTQjlGasOAMjVJY4ZQWk51FDhFNIqvISXIWwgpCgCuUj8PUqFjHYpW_CdaYdrEqanRNrK0NiXVJ37lf7RaxIG3tUSb0Uzuk2EU4ltg_JzC213x9m3utoCvbbtrbfXYMLI9qgb45zDD6nTx_1Szp_f57Vj_NU4rIqUoOlJhUThTK0UCUjVBmoCEWIaER1aYxCWhlEGCskzhUm1KAcYcEwjhtBxuD28Hfju59Bh56vusG7WMkxYlWJq5yw6Lo_uKTvQvDa8I23a-F3HEG-58kjT37iySMWHnnyyJOzIuYfDvneCxd6LZenmv99-AMaaofX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2198628439</pqid></control><display><type>article</type><title>Magneto-Nanofluid Dynamics in Convergent-Divergent Channel and its Inherent Irreversibility</title><source>Scientific.net Journals</source><creator>Alam, Md. Sarwar ; Khan, Md. Abdul Hakim ; Makinde, Oluwole Daniel</creator><creatorcontrib>Alam, Md. Sarwar ; Khan, Md. Abdul Hakim ; Makinde, Oluwole Daniel</creatorcontrib><description>The effects of Cu-nanoparticles on the entropy generation of steady magnetohydrodynamic incompressible flow with viscous dissipation and Joule heating through convergent-divergent channel are analysed in this paper. The basic nonlinear partial differential equations are transformed into a system of coupled ordinary differential equations using suitable transformations which are then solved using power series with Hermite- Padé approximation technique. The velocity profiles, temperature distributions, entropy generation rates, Bejan number as well as the rate of heat transfer at the wall are presented in convergent-divergent channels for various values of nanoparticles solid volume fraction, Eckert number, Reynolds number and channel angle. A stability analysis has been performed for the shear stress which signifies that the lower solution branch is stable and physically realizable, whereas the upper solution branch is unstable. It is interesting to remark that the entropy generation of the system increases at the two walls as well as the heat transfer irreversibility is dominant there whereas the fluid friction irreversibility is dominant along the centreline of the channel.</description><identifier>ISSN: 1012-0386</identifier><identifier>ISSN: 1662-9507</identifier><identifier>EISSN: 1662-9507</identifier><identifier>DOI: 10.4028/www.scientific.net/DDF.377.95</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Basic converters ; Convergence ; Entropy ; Fluid dynamics ; Fluid flow ; Fluid friction ; Heat transfer ; Incompressible flow ; Magnetohydrodynamics ; Mathematical analysis ; Nanofluids ; Nanoparticles ; Nonlinear differential equations ; Nonlinear equations ; Ohmic dissipation ; Ordinary differential equations ; Partial differential equations ; Power series ; Resistance heating ; Reynolds number ; Shear stress ; Stability analysis ; Velocity distribution</subject><ispartof>Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum, 2017-09, Vol.377, p.95-110</ispartof><rights>2017 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Sep 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2685-f2ce389a5df75d6937df0d37113e17e6ffd1edf13995c24d237f1412a92295ca3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4633?width=600</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Alam, Md. Sarwar</creatorcontrib><creatorcontrib>Khan, Md. Abdul Hakim</creatorcontrib><creatorcontrib>Makinde, Oluwole Daniel</creatorcontrib><title>Magneto-Nanofluid Dynamics in Convergent-Divergent Channel and its Inherent Irreversibility</title><title>Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum</title><description>The effects of Cu-nanoparticles on the entropy generation of steady magnetohydrodynamic incompressible flow with viscous dissipation and Joule heating through convergent-divergent channel are analysed in this paper. The basic nonlinear partial differential equations are transformed into a system of coupled ordinary differential equations using suitable transformations which are then solved using power series with Hermite- Padé approximation technique. The velocity profiles, temperature distributions, entropy generation rates, Bejan number as well as the rate of heat transfer at the wall are presented in convergent-divergent channels for various values of nanoparticles solid volume fraction, Eckert number, Reynolds number and channel angle. A stability analysis has been performed for the shear stress which signifies that the lower solution branch is stable and physically realizable, whereas the upper solution branch is unstable. It is interesting to remark that the entropy generation of the system increases at the two walls as well as the heat transfer irreversibility is dominant there whereas the fluid friction irreversibility is dominant along the centreline of the channel.</description><subject>Basic converters</subject><subject>Convergence</subject><subject>Entropy</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid friction</subject><subject>Heat transfer</subject><subject>Incompressible flow</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical analysis</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Ohmic dissipation</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Power series</subject><subject>Resistance heating</subject><subject>Reynolds number</subject><subject>Shear stress</subject><subject>Stability analysis</subject><subject>Velocity distribution</subject><issn>1012-0386</issn><issn>1662-9507</issn><issn>1662-9507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkEtLw0AUhQdRsFb_Q0BcJp1HksksRCSxWqi60ZWLYZxHOyWd1JnE0n_vlBa6dXUP955zD3wA3CGY5RBXk-12mwVpteutsTJzup80zTQjlGasOAMjVJY4ZQWk51FDhFNIqvISXIWwgpCgCuUj8PUqFjHYpW_CdaYdrEqanRNrK0NiXVJ37lf7RaxIG3tUSb0Uzuk2EU4ltg_JzC213x9m3utoCvbbtrbfXYMLI9qgb45zDD6nTx_1Szp_f57Vj_NU4rIqUoOlJhUThTK0UCUjVBmoCEWIaER1aYxCWhlEGCskzhUm1KAcYcEwjhtBxuD28Hfju59Bh56vusG7WMkxYlWJq5yw6Lo_uKTvQvDa8I23a-F3HEG-58kjT37iySMWHnnyyJOzIuYfDvneCxd6LZenmv99-AMaaofX</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Alam, Md. Sarwar</creator><creator>Khan, Md. Abdul Hakim</creator><creator>Makinde, Oluwole Daniel</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20170901</creationdate><title>Magneto-Nanofluid Dynamics in Convergent-Divergent Channel and its Inherent Irreversibility</title><author>Alam, Md. Sarwar ; Khan, Md. Abdul Hakim ; Makinde, Oluwole Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2685-f2ce389a5df75d6937df0d37113e17e6ffd1edf13995c24d237f1412a92295ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Basic converters</topic><topic>Convergence</topic><topic>Entropy</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid friction</topic><topic>Heat transfer</topic><topic>Incompressible flow</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical analysis</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Ohmic dissipation</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Power series</topic><topic>Resistance heating</topic><topic>Reynolds number</topic><topic>Shear stress</topic><topic>Stability analysis</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alam, Md. Sarwar</creatorcontrib><creatorcontrib>Khan, Md. Abdul Hakim</creatorcontrib><creatorcontrib>Makinde, Oluwole Daniel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alam, Md. Sarwar</au><au>Khan, Md. Abdul Hakim</au><au>Makinde, Oluwole Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magneto-Nanofluid Dynamics in Convergent-Divergent Channel and its Inherent Irreversibility</atitle><jtitle>Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>377</volume><spage>95</spage><epage>110</epage><pages>95-110</pages><issn>1012-0386</issn><issn>1662-9507</issn><eissn>1662-9507</eissn><abstract>The effects of Cu-nanoparticles on the entropy generation of steady magnetohydrodynamic incompressible flow with viscous dissipation and Joule heating through convergent-divergent channel are analysed in this paper. The basic nonlinear partial differential equations are transformed into a system of coupled ordinary differential equations using suitable transformations which are then solved using power series with Hermite- Padé approximation technique. The velocity profiles, temperature distributions, entropy generation rates, Bejan number as well as the rate of heat transfer at the wall are presented in convergent-divergent channels for various values of nanoparticles solid volume fraction, Eckert number, Reynolds number and channel angle. A stability analysis has been performed for the shear stress which signifies that the lower solution branch is stable and physically realizable, whereas the upper solution branch is unstable. It is interesting to remark that the entropy generation of the system increases at the two walls as well as the heat transfer irreversibility is dominant there whereas the fluid friction irreversibility is dominant along the centreline of the channel.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/DDF.377.95</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1012-0386
ispartof Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum, 2017-09, Vol.377, p.95-110
issn 1012-0386
1662-9507
1662-9507
language eng
recordid cdi_proquest_journals_2198628439
source Scientific.net Journals
subjects Basic converters
Convergence
Entropy
Fluid dynamics
Fluid flow
Fluid friction
Heat transfer
Incompressible flow
Magnetohydrodynamics
Mathematical analysis
Nanofluids
Nanoparticles
Nonlinear differential equations
Nonlinear equations
Ohmic dissipation
Ordinary differential equations
Partial differential equations
Power series
Resistance heating
Reynolds number
Shear stress
Stability analysis
Velocity distribution
title Magneto-Nanofluid Dynamics in Convergent-Divergent Channel and its Inherent Irreversibility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magneto-Nanofluid%20Dynamics%20in%20Convergent-Divergent%20Channel%20and%20its%20Inherent%20Irreversibility&rft.jtitle=Diffusion%20and%20defect%20data.%20Solid%20state%20data.%20Pt.%20A,%20Defect%20and%20diffusion%20forum&rft.au=Alam,%20Md.%20Sarwar&rft.date=2017-09-01&rft.volume=377&rft.spage=95&rft.epage=110&rft.pages=95-110&rft.issn=1012-0386&rft.eissn=1662-9507&rft_id=info:doi/10.4028/www.scientific.net/DDF.377.95&rft_dat=%3Cproquest_cross%3E2198628439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2198628439&rft_id=info:pmid/&rfr_iscdi=true