Application of Coded Excitation Signals for Measurement of Rock Ultrasonic Wave Velocity
The accurate measurement of ultrasonic velocity requires the detected waveforms to have a high signal-to-noise ratio (SNR). Coded excitation technique (CET) can improve the SNR without resolution loss. This study introduces the basic principles of phase-coded technology and gives a synthetic and exp...
Gespeichert in:
Veröffentlicht in: | Pure and applied geophysics 2020, Vol.177 (1), p.487-496 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 496 |
---|---|
container_issue | 1 |
container_start_page | 487 |
container_title | Pure and applied geophysics |
container_volume | 177 |
creator | Wu, He-Zhen Zhu, Wei He, Tai-Ming Liu, Zheng-Yi Lan, Xiao-Wen |
description | The accurate measurement of ultrasonic velocity requires the detected waveforms to have a high signal-to-noise ratio (SNR). Coded excitation technique (CET) can improve the SNR without resolution loss. This study introduces the basic principles of phase-coded technology and gives a synthetic and experimental evaluation of Barker and Golay codes. All the results show that CET can increase the SNR, but the gain in SNR (GSNR) is lower than the theoretical value. The velocity measurements on red sandstone and granite verify that the Barker code has better pulse compression performance than the Golay code. Besides, the application of Barker-coded signals on the velocity monitoring of uniaxially compressed rock proves that the Barker CET is reliable. |
doi_str_mv | 10.1007/s00024-019-02166-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2198315521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2198315521</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-7fc593bad8e4ec1b47106e39024da071a09e169047a815b41b83394846d9d7ee3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKcFz6sz2c3HHkupH1AR1Kq3ZZNMSmqarbup2H9vagRvngaG93mZeRg7R7hEgPQqAECkBKAWEGGSiOyAjVBFIDTK5JCNAKQUKo7lMTsJYQWAaRrrEXubbDZNXdiudi13FZ-6kko--yrqbtg91cvWNoFXzvN7smHraU1tt88-uuKdL5rO2-DauuCv9pP4CzWuh3en7KjqOTr7nWO2uJ49T2_F_OHmbjqZCytV1Im0KmItc1tmpKjAXKUICUndf1NaSNGCJkw0qNRmGOcK80xKrTKVlLpMieSYXQy9G-8-thQ6s3Jbvz_ZRKgziXEcYZ-KhlThXQieKrPx9dr6nUEwe4NmMGh6g-bHoMl6SA5Q6MPtkvxf9T_UN47ncvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2198315521</pqid></control><display><type>article</type><title>Application of Coded Excitation Signals for Measurement of Rock Ultrasonic Wave Velocity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wu, He-Zhen ; Zhu, Wei ; He, Tai-Ming ; Liu, Zheng-Yi ; Lan, Xiao-Wen</creator><creatorcontrib>Wu, He-Zhen ; Zhu, Wei ; He, Tai-Ming ; Liu, Zheng-Yi ; Lan, Xiao-Wen</creatorcontrib><description>The accurate measurement of ultrasonic velocity requires the detected waveforms to have a high signal-to-noise ratio (SNR). Coded excitation technique (CET) can improve the SNR without resolution loss. This study introduces the basic principles of phase-coded technology and gives a synthetic and experimental evaluation of Barker and Golay codes. All the results show that CET can increase the SNR, but the gain in SNR (GSNR) is lower than the theoretical value. The velocity measurements on red sandstone and granite verify that the Barker code has better pulse compression performance than the Golay code. Besides, the application of Barker-coded signals on the velocity monitoring of uniaxially compressed rock proves that the Barker CET is reliable.</description><identifier>ISSN: 0033-4553</identifier><identifier>EISSN: 1420-9136</identifier><identifier>DOI: 10.1007/s00024-019-02166-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Compression ; Earth and Environmental Science ; Earth Sciences ; Evaluation ; Excitation ; Geophysics/Geodesy ; Golay codes ; Measurement ; Pulse compression ; Rocks ; Sandstone ; Sedimentary rocks ; Seismic velocities ; Signal-to-noise ratio ; Velocity ; Wave velocity ; Waveforms</subject><ispartof>Pure and applied geophysics, 2020, Vol.177 (1), p.487-496</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Pure and Applied Geophysics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-7fc593bad8e4ec1b47106e39024da071a09e169047a815b41b83394846d9d7ee3</citedby><cites>FETCH-LOGICAL-a342t-7fc593bad8e4ec1b47106e39024da071a09e169047a815b41b83394846d9d7ee3</cites><orcidid>0000-0001-9110-8284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00024-019-02166-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00024-019-02166-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wu, He-Zhen</creatorcontrib><creatorcontrib>Zhu, Wei</creatorcontrib><creatorcontrib>He, Tai-Ming</creatorcontrib><creatorcontrib>Liu, Zheng-Yi</creatorcontrib><creatorcontrib>Lan, Xiao-Wen</creatorcontrib><title>Application of Coded Excitation Signals for Measurement of Rock Ultrasonic Wave Velocity</title><title>Pure and applied geophysics</title><addtitle>Pure Appl. Geophys</addtitle><description>The accurate measurement of ultrasonic velocity requires the detected waveforms to have a high signal-to-noise ratio (SNR). Coded excitation technique (CET) can improve the SNR without resolution loss. This study introduces the basic principles of phase-coded technology and gives a synthetic and experimental evaluation of Barker and Golay codes. All the results show that CET can increase the SNR, but the gain in SNR (GSNR) is lower than the theoretical value. The velocity measurements on red sandstone and granite verify that the Barker code has better pulse compression performance than the Golay code. Besides, the application of Barker-coded signals on the velocity monitoring of uniaxially compressed rock proves that the Barker CET is reliable.</description><subject>Compression</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Evaluation</subject><subject>Excitation</subject><subject>Geophysics/Geodesy</subject><subject>Golay codes</subject><subject>Measurement</subject><subject>Pulse compression</subject><subject>Rocks</subject><subject>Sandstone</subject><subject>Sedimentary rocks</subject><subject>Seismic velocities</subject><subject>Signal-to-noise ratio</subject><subject>Velocity</subject><subject>Wave velocity</subject><subject>Waveforms</subject><issn>0033-4553</issn><issn>1420-9136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1Lw0AQhhdRsFb_gKcFz6sz2c3HHkupH1AR1Kq3ZZNMSmqarbup2H9vagRvngaG93mZeRg7R7hEgPQqAECkBKAWEGGSiOyAjVBFIDTK5JCNAKQUKo7lMTsJYQWAaRrrEXubbDZNXdiudi13FZ-6kko--yrqbtg91cvWNoFXzvN7smHraU1tt88-uuKdL5rO2-DauuCv9pP4CzWuh3en7KjqOTr7nWO2uJ49T2_F_OHmbjqZCytV1Im0KmItc1tmpKjAXKUICUndf1NaSNGCJkw0qNRmGOcK80xKrTKVlLpMieSYXQy9G-8-thQ6s3Jbvz_ZRKgziXEcYZ-KhlThXQieKrPx9dr6nUEwe4NmMGh6g-bHoMl6SA5Q6MPtkvxf9T_UN47ncvQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Wu, He-Zhen</creator><creator>Zhu, Wei</creator><creator>He, Tai-Ming</creator><creator>Liu, Zheng-Yi</creator><creator>Lan, Xiao-Wen</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9110-8284</orcidid></search><sort><creationdate>2020</creationdate><title>Application of Coded Excitation Signals for Measurement of Rock Ultrasonic Wave Velocity</title><author>Wu, He-Zhen ; Zhu, Wei ; He, Tai-Ming ; Liu, Zheng-Yi ; Lan, Xiao-Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-7fc593bad8e4ec1b47106e39024da071a09e169047a815b41b83394846d9d7ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Compression</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Evaluation</topic><topic>Excitation</topic><topic>Geophysics/Geodesy</topic><topic>Golay codes</topic><topic>Measurement</topic><topic>Pulse compression</topic><topic>Rocks</topic><topic>Sandstone</topic><topic>Sedimentary rocks</topic><topic>Seismic velocities</topic><topic>Signal-to-noise ratio</topic><topic>Velocity</topic><topic>Wave velocity</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, He-Zhen</creatorcontrib><creatorcontrib>Zhu, Wei</creatorcontrib><creatorcontrib>He, Tai-Ming</creatorcontrib><creatorcontrib>Liu, Zheng-Yi</creatorcontrib><creatorcontrib>Lan, Xiao-Wen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Pure and applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, He-Zhen</au><au>Zhu, Wei</au><au>He, Tai-Ming</au><au>Liu, Zheng-Yi</au><au>Lan, Xiao-Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Coded Excitation Signals for Measurement of Rock Ultrasonic Wave Velocity</atitle><jtitle>Pure and applied geophysics</jtitle><stitle>Pure Appl. Geophys</stitle><date>2020</date><risdate>2020</risdate><volume>177</volume><issue>1</issue><spage>487</spage><epage>496</epage><pages>487-496</pages><issn>0033-4553</issn><eissn>1420-9136</eissn><abstract>The accurate measurement of ultrasonic velocity requires the detected waveforms to have a high signal-to-noise ratio (SNR). Coded excitation technique (CET) can improve the SNR without resolution loss. This study introduces the basic principles of phase-coded technology and gives a synthetic and experimental evaluation of Barker and Golay codes. All the results show that CET can increase the SNR, but the gain in SNR (GSNR) is lower than the theoretical value. The velocity measurements on red sandstone and granite verify that the Barker code has better pulse compression performance than the Golay code. Besides, the application of Barker-coded signals on the velocity monitoring of uniaxially compressed rock proves that the Barker CET is reliable.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00024-019-02166-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9110-8284</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-4553 |
ispartof | Pure and applied geophysics, 2020, Vol.177 (1), p.487-496 |
issn | 0033-4553 1420-9136 |
language | eng |
recordid | cdi_proquest_journals_2198315521 |
source | SpringerLink Journals - AutoHoldings |
subjects | Compression Earth and Environmental Science Earth Sciences Evaluation Excitation Geophysics/Geodesy Golay codes Measurement Pulse compression Rocks Sandstone Sedimentary rocks Seismic velocities Signal-to-noise ratio Velocity Wave velocity Waveforms |
title | Application of Coded Excitation Signals for Measurement of Rock Ultrasonic Wave Velocity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A05%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Coded%20Excitation%20Signals%20for%20Measurement%20of%20Rock%20Ultrasonic%20Wave%20Velocity&rft.jtitle=Pure%20and%20applied%20geophysics&rft.au=Wu,%20He-Zhen&rft.date=2020&rft.volume=177&rft.issue=1&rft.spage=487&rft.epage=496&rft.pages=487-496&rft.issn=0033-4553&rft.eissn=1420-9136&rft_id=info:doi/10.1007/s00024-019-02166-8&rft_dat=%3Cproquest_cross%3E2198315521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2198315521&rft_id=info:pmid/&rfr_iscdi=true |