Resolving wave and laminar boundary layer scales for gap resonance problems
Free surface oscillations in a narrow gap between elongated parallel bodies are studied numerically. As this represents both a highly resonant system and an arrangement of relevance to offshore operations, the nature of the damping is of primary interest, and has a critical role in determining the r...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2019-05, Vol.866, p.759-775 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 775 |
---|---|
container_issue | |
container_start_page | 759 |
container_title | Journal of fluid mechanics |
container_volume | 866 |
creator | Wang, H. Wolgamot, H. A. Draper, S. Zhao, W. Taylor, P. H. Cheng, L. |
description | Free surface oscillations in a narrow gap between elongated parallel bodies are studied numerically. As this represents both a highly resonant system and an arrangement of relevance to offshore operations, the nature of the damping is of primary interest, and has a critical role in determining the response. Previous experimental work has suggested that the damping could be attributed to laminar boundary layers; here our numerical wave tank successfully resolves both wave and boundary layer scales to provide strong numerical evidence in support of this conclusion. The simulations follow the experiments in using wave groups so that the computation is tractable, and both linear and second harmonic excitation of the gap are demonstrated. |
doi_str_mv | 10.1017/jfm.2019.115 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2198021225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2019_115</cupid><sourcerecordid>2198021225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-7cfbd41277c95235681754184af83fdcd0d42aa43b1d099531f1face256aa5e63</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKs3f0DAq7tmks1m9yhFq1gQRM9hNh9ly37UpK3035vSghdPA8PzvsM8hNwCy4GBelj5PucM6hxAnpEJFGWdqbKQ52TCGOcZAGeX5CrGFWMgWK0m5O3DxbHbtcOS_uDOURws7bBvBwy0GbeDxbBPi70LNBrsXKR-DHSJaxpScMDBOLoOY9O5Pl6TC49ddDenOSVfz0-fs5ds8T5_nT0uMiMY32TK-MYWwJUyteRClhUoWUBVoK-Et8YyW3DEQjRgWV1LAR48GsdliShdKabk7tibDn9vXdzo1bgNQzqpOdQV48C5TNT9kTJhjDE4r9eh7dM7Gpg-6NJJlz7o0klXwvMTjn0TWrt0f63_Bn4BvJhsgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2198021225</pqid></control><display><type>article</type><title>Resolving wave and laminar boundary layer scales for gap resonance problems</title><source>Cambridge University Press Journals Complete</source><creator>Wang, H. ; Wolgamot, H. A. ; Draper, S. ; Zhao, W. ; Taylor, P. H. ; Cheng, L.</creator><creatorcontrib>Wang, H. ; Wolgamot, H. A. ; Draper, S. ; Zhao, W. ; Taylor, P. H. ; Cheng, L.</creatorcontrib><description>Free surface oscillations in a narrow gap between elongated parallel bodies are studied numerically. As this represents both a highly resonant system and an arrangement of relevance to offshore operations, the nature of the damping is of primary interest, and has a critical role in determining the response. Previous experimental work has suggested that the damping could be attributed to laminar boundary layers; here our numerical wave tank successfully resolves both wave and boundary layer scales to provide strong numerical evidence in support of this conclusion. The simulations follow the experiments in using wave groups so that the computation is tractable, and both linear and second harmonic excitation of the gap are demonstrated.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2019.115</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Agreements ; Boundary layers ; Computation ; Computer simulation ; Damping ; Experiments ; Finite volume method ; Free surfaces ; Friction ; Harmonic excitation ; JFM Papers ; Laboratories ; Laminar boundary layer ; Offshore operations ; Oscillations ; Simulation ; Time series ; Wave groups ; Wave tanks</subject><ispartof>Journal of fluid mechanics, 2019-05, Vol.866, p.759-775</ispartof><rights>2019 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-7cfbd41277c95235681754184af83fdcd0d42aa43b1d099531f1face256aa5e63</citedby><cites>FETCH-LOGICAL-c302t-7cfbd41277c95235681754184af83fdcd0d42aa43b1d099531f1face256aa5e63</cites><orcidid>0000-0002-8061-2001 ; 0000-0003-3933-8896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112019001150/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Wang, H.</creatorcontrib><creatorcontrib>Wolgamot, H. A.</creatorcontrib><creatorcontrib>Draper, S.</creatorcontrib><creatorcontrib>Zhao, W.</creatorcontrib><creatorcontrib>Taylor, P. H.</creatorcontrib><creatorcontrib>Cheng, L.</creatorcontrib><title>Resolving wave and laminar boundary layer scales for gap resonance problems</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Free surface oscillations in a narrow gap between elongated parallel bodies are studied numerically. As this represents both a highly resonant system and an arrangement of relevance to offshore operations, the nature of the damping is of primary interest, and has a critical role in determining the response. Previous experimental work has suggested that the damping could be attributed to laminar boundary layers; here our numerical wave tank successfully resolves both wave and boundary layer scales to provide strong numerical evidence in support of this conclusion. The simulations follow the experiments in using wave groups so that the computation is tractable, and both linear and second harmonic excitation of the gap are demonstrated.</description><subject>Agreements</subject><subject>Boundary layers</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Damping</subject><subject>Experiments</subject><subject>Finite volume method</subject><subject>Free surfaces</subject><subject>Friction</subject><subject>Harmonic excitation</subject><subject>JFM Papers</subject><subject>Laboratories</subject><subject>Laminar boundary layer</subject><subject>Offshore operations</subject><subject>Oscillations</subject><subject>Simulation</subject><subject>Time series</subject><subject>Wave groups</subject><subject>Wave tanks</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LAzEQhoMoWKs3f0DAq7tmks1m9yhFq1gQRM9hNh9ly37UpK3035vSghdPA8PzvsM8hNwCy4GBelj5PucM6hxAnpEJFGWdqbKQ52TCGOcZAGeX5CrGFWMgWK0m5O3DxbHbtcOS_uDOURws7bBvBwy0GbeDxbBPi70LNBrsXKR-DHSJaxpScMDBOLoOY9O5Pl6TC49ddDenOSVfz0-fs5ds8T5_nT0uMiMY32TK-MYWwJUyteRClhUoWUBVoK-Et8YyW3DEQjRgWV1LAR48GsdliShdKabk7tibDn9vXdzo1bgNQzqpOdQV48C5TNT9kTJhjDE4r9eh7dM7Gpg-6NJJlz7o0klXwvMTjn0TWrt0f63_Bn4BvJhsgw</recordid><startdate>20190510</startdate><enddate>20190510</enddate><creator>Wang, H.</creator><creator>Wolgamot, H. A.</creator><creator>Draper, S.</creator><creator>Zhao, W.</creator><creator>Taylor, P. H.</creator><creator>Cheng, L.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-8061-2001</orcidid><orcidid>https://orcid.org/0000-0003-3933-8896</orcidid></search><sort><creationdate>20190510</creationdate><title>Resolving wave and laminar boundary layer scales for gap resonance problems</title><author>Wang, H. ; Wolgamot, H. A. ; Draper, S. ; Zhao, W. ; Taylor, P. H. ; Cheng, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-7cfbd41277c95235681754184af83fdcd0d42aa43b1d099531f1face256aa5e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agreements</topic><topic>Boundary layers</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Damping</topic><topic>Experiments</topic><topic>Finite volume method</topic><topic>Free surfaces</topic><topic>Friction</topic><topic>Harmonic excitation</topic><topic>JFM Papers</topic><topic>Laboratories</topic><topic>Laminar boundary layer</topic><topic>Offshore operations</topic><topic>Oscillations</topic><topic>Simulation</topic><topic>Time series</topic><topic>Wave groups</topic><topic>Wave tanks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, H.</creatorcontrib><creatorcontrib>Wolgamot, H. A.</creatorcontrib><creatorcontrib>Draper, S.</creatorcontrib><creatorcontrib>Zhao, W.</creatorcontrib><creatorcontrib>Taylor, P. H.</creatorcontrib><creatorcontrib>Cheng, L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, H.</au><au>Wolgamot, H. A.</au><au>Draper, S.</au><au>Zhao, W.</au><au>Taylor, P. H.</au><au>Cheng, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolving wave and laminar boundary layer scales for gap resonance problems</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2019-05-10</date><risdate>2019</risdate><volume>866</volume><spage>759</spage><epage>775</epage><pages>759-775</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Free surface oscillations in a narrow gap between elongated parallel bodies are studied numerically. As this represents both a highly resonant system and an arrangement of relevance to offshore operations, the nature of the damping is of primary interest, and has a critical role in determining the response. Previous experimental work has suggested that the damping could be attributed to laminar boundary layers; here our numerical wave tank successfully resolves both wave and boundary layer scales to provide strong numerical evidence in support of this conclusion. The simulations follow the experiments in using wave groups so that the computation is tractable, and both linear and second harmonic excitation of the gap are demonstrated.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2019.115</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8061-2001</orcidid><orcidid>https://orcid.org/0000-0003-3933-8896</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2019-05, Vol.866, p.759-775 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2198021225 |
source | Cambridge University Press Journals Complete |
subjects | Agreements Boundary layers Computation Computer simulation Damping Experiments Finite volume method Free surfaces Friction Harmonic excitation JFM Papers Laboratories Laminar boundary layer Offshore operations Oscillations Simulation Time series Wave groups Wave tanks |
title | Resolving wave and laminar boundary layer scales for gap resonance problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A25%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolving%20wave%20and%20laminar%20boundary%20layer%20scales%20for%20gap%20resonance%20problems&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Wang,%20H.&rft.date=2019-05-10&rft.volume=866&rft.spage=759&rft.epage=775&rft.pages=759-775&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2019.115&rft_dat=%3Cproquest_cross%3E2198021225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2198021225&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2019_115&rfr_iscdi=true |