Prostaglandin E 2 Increases Lentiviral Vector Transduction Efficiency of Adult Human Hematopoietic Stem and Progenitor Cells

Gene therapy currently in development for hemoglobinopathies utilizes ex vivo lentiviral transduction of CD34 hematopoietic stem and progenitor cells (HSPCs). A small-molecule screen identified prostaglandin E (PGE ) as a positive mediator of lentiviral transduction of CD34 cells. Supplementation wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy 2018-01, Vol.26 (1), p.320
Hauptverfasser: Heffner, Garrett C, Bonner, Melissa, Christiansen, Lauryn, Pierciey, Francis J, Campbell, Dakota, Smurnyy, Yegor, Zhang, Wenliang, Hamel, Amanda, Shaw, Seema, Lewis, Gretchen, Goss, Kendrick A, Garijo, Olivia, Torbett, Bruce E, Horton, Holly, Finer, Mitchell H, Gregory, Philip D, Veres, Gabor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 320
container_title Molecular therapy
container_volume 26
creator Heffner, Garrett C
Bonner, Melissa
Christiansen, Lauryn
Pierciey, Francis J
Campbell, Dakota
Smurnyy, Yegor
Zhang, Wenliang
Hamel, Amanda
Shaw, Seema
Lewis, Gretchen
Goss, Kendrick A
Garijo, Olivia
Torbett, Bruce E
Horton, Holly
Finer, Mitchell H
Gregory, Philip D
Veres, Gabor
description Gene therapy currently in development for hemoglobinopathies utilizes ex vivo lentiviral transduction of CD34 hematopoietic stem and progenitor cells (HSPCs). A small-molecule screen identified prostaglandin E (PGE ) as a positive mediator of lentiviral transduction of CD34 cells. Supplementation with PGE increased lentiviral vector (LVV) transduction of CD34 cells approximately 2-fold compared to control transduction methods with no effect on cell viability. Transduction efficiency was consistently increased in primary CD34 cells from multiple normal human donors and from patients with β-thalassemia or sickle cell disease. Notably, PGE increased transduction of repopulating human HSPCs in an immune-deficient (nonobese diabetic/severe combined immunodeficiency/interleukin-2 gamma receptor null [NSG]) xenotransplantation mouse model without evidence of in vivo toxicity, lineage bias, or a de novo bias of lentiviral integration sites. These data suggest that PGE improves lentiviral transduction and increases vector copy number, therefore resulting in increased transgene expression. As a result, PGE may be useful in clinical gene therapy applications using lentivirally modified HSPCs.
doi_str_mv 10.1016/j.ymthe.2017.09.025
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2198017049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2198017049</sourcerecordid><originalsourceid>FETCH-LOGICAL-p136t-3df8ab399030736d916ef2297ca3d39231e3e63e4ef4eabc298f76f7b1ebc77a3</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYMoTqe_QJCA1635aNPlcozpBgMFp7clTd_MjDatSSoM_PFWnF6dc_HwHDgI3VCSUkLF_T49tPEdUkZokRKZEpafoAuaszwhhGWn_52KCboMYT82mktxjiZM0pEW7AJ9PfsuRLVrlKutw0vM8NppDypAwBtw0X5arxr8Bjp2Hm-9cqEedLTdCBtjtQWnD7gzeF4PTcSroVUOr6BVses7C9Fq_BKhxaMfj1s7cPZHtICmCVfozKgmwPUxp-j1YbldrJLN0-N6Md8kPeUiJrw2M1VxKQknBRe1pAIMY7LQitdcMk6Bg-CQgclAVZrJmSmEKSoKlS4Kxafo7tfb--5jgBDLfTd4N06WjMrZ-B_J5EjdHqmhaqEue29b5Q_l31n8Gz2LbrU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2198017049</pqid></control><display><type>article</type><title>Prostaglandin E 2 Increases Lentiviral Vector Transduction Efficiency of Adult Human Hematopoietic Stem and Progenitor Cells</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Heffner, Garrett C ; Bonner, Melissa ; Christiansen, Lauryn ; Pierciey, Francis J ; Campbell, Dakota ; Smurnyy, Yegor ; Zhang, Wenliang ; Hamel, Amanda ; Shaw, Seema ; Lewis, Gretchen ; Goss, Kendrick A ; Garijo, Olivia ; Torbett, Bruce E ; Horton, Holly ; Finer, Mitchell H ; Gregory, Philip D ; Veres, Gabor</creator><creatorcontrib>Heffner, Garrett C ; Bonner, Melissa ; Christiansen, Lauryn ; Pierciey, Francis J ; Campbell, Dakota ; Smurnyy, Yegor ; Zhang, Wenliang ; Hamel, Amanda ; Shaw, Seema ; Lewis, Gretchen ; Goss, Kendrick A ; Garijo, Olivia ; Torbett, Bruce E ; Horton, Holly ; Finer, Mitchell H ; Gregory, Philip D ; Veres, Gabor</creatorcontrib><description>Gene therapy currently in development for hemoglobinopathies utilizes ex vivo lentiviral transduction of CD34 hematopoietic stem and progenitor cells (HSPCs). A small-molecule screen identified prostaglandin E (PGE ) as a positive mediator of lentiviral transduction of CD34 cells. Supplementation with PGE increased lentiviral vector (LVV) transduction of CD34 cells approximately 2-fold compared to control transduction methods with no effect on cell viability. Transduction efficiency was consistently increased in primary CD34 cells from multiple normal human donors and from patients with β-thalassemia or sickle cell disease. Notably, PGE increased transduction of repopulating human HSPCs in an immune-deficient (nonobese diabetic/severe combined immunodeficiency/interleukin-2 gamma receptor null [NSG]) xenotransplantation mouse model without evidence of in vivo toxicity, lineage bias, or a de novo bias of lentiviral integration sites. These data suggest that PGE improves lentiviral transduction and increases vector copy number, therefore resulting in increased transgene expression. As a result, PGE may be useful in clinical gene therapy applications using lentivirally modified HSPCs.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2017.09.025</identifier><identifier>PMID: 29102562</identifier><language>eng</language><publisher>United States: Elsevier Limited</publisher><subject>Anemia, Sickle Cell - genetics ; Anemia, Sickle Cell - metabolism ; Animals ; Antigens, CD34 - metabolism ; beta-Thalassemia - genetics ; beta-Thalassemia - metabolism ; CD34 antigen ; Cell cycle ; Cell Line ; Cell viability ; Copy number ; Cytokines ; Diabetes mellitus ; Dinoprostone - metabolism ; Experiments ; Flow cytometry ; Gene Library ; Gene therapy ; Gene Transfer Techniques ; Genetic Therapy ; Genetic Vectors - genetics ; Globins - genetics ; Hematopoietic stem cells ; Hematopoietic Stem Cells - metabolism ; Humans ; Interleukin 2 ; Lentivirus - genetics ; Leukocyte Common Antigens - metabolism ; Mice ; Progenitor cells ; Prostaglandin E ; Prostaglandin E2 ; Severe combined immunodeficiency ; Sickle cell disease ; Stem cells ; Supplements ; Thalassemia ; Toxicity ; Transduction, Genetic ; Transgenes ; Transplantation, Heterologous ; Transplants &amp; implants ; Virus Internalization ; Xenografts</subject><ispartof>Molecular therapy, 2018-01, Vol.26 (1), p.320</ispartof><rights>Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2017. The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29102562$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heffner, Garrett C</creatorcontrib><creatorcontrib>Bonner, Melissa</creatorcontrib><creatorcontrib>Christiansen, Lauryn</creatorcontrib><creatorcontrib>Pierciey, Francis J</creatorcontrib><creatorcontrib>Campbell, Dakota</creatorcontrib><creatorcontrib>Smurnyy, Yegor</creatorcontrib><creatorcontrib>Zhang, Wenliang</creatorcontrib><creatorcontrib>Hamel, Amanda</creatorcontrib><creatorcontrib>Shaw, Seema</creatorcontrib><creatorcontrib>Lewis, Gretchen</creatorcontrib><creatorcontrib>Goss, Kendrick A</creatorcontrib><creatorcontrib>Garijo, Olivia</creatorcontrib><creatorcontrib>Torbett, Bruce E</creatorcontrib><creatorcontrib>Horton, Holly</creatorcontrib><creatorcontrib>Finer, Mitchell H</creatorcontrib><creatorcontrib>Gregory, Philip D</creatorcontrib><creatorcontrib>Veres, Gabor</creatorcontrib><title>Prostaglandin E 2 Increases Lentiviral Vector Transduction Efficiency of Adult Human Hematopoietic Stem and Progenitor Cells</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Gene therapy currently in development for hemoglobinopathies utilizes ex vivo lentiviral transduction of CD34 hematopoietic stem and progenitor cells (HSPCs). A small-molecule screen identified prostaglandin E (PGE ) as a positive mediator of lentiviral transduction of CD34 cells. Supplementation with PGE increased lentiviral vector (LVV) transduction of CD34 cells approximately 2-fold compared to control transduction methods with no effect on cell viability. Transduction efficiency was consistently increased in primary CD34 cells from multiple normal human donors and from patients with β-thalassemia or sickle cell disease. Notably, PGE increased transduction of repopulating human HSPCs in an immune-deficient (nonobese diabetic/severe combined immunodeficiency/interleukin-2 gamma receptor null [NSG]) xenotransplantation mouse model without evidence of in vivo toxicity, lineage bias, or a de novo bias of lentiviral integration sites. These data suggest that PGE improves lentiviral transduction and increases vector copy number, therefore resulting in increased transgene expression. As a result, PGE may be useful in clinical gene therapy applications using lentivirally modified HSPCs.</description><subject>Anemia, Sickle Cell - genetics</subject><subject>Anemia, Sickle Cell - metabolism</subject><subject>Animals</subject><subject>Antigens, CD34 - metabolism</subject><subject>beta-Thalassemia - genetics</subject><subject>beta-Thalassemia - metabolism</subject><subject>CD34 antigen</subject><subject>Cell cycle</subject><subject>Cell Line</subject><subject>Cell viability</subject><subject>Copy number</subject><subject>Cytokines</subject><subject>Diabetes mellitus</subject><subject>Dinoprostone - metabolism</subject><subject>Experiments</subject><subject>Flow cytometry</subject><subject>Gene Library</subject><subject>Gene therapy</subject><subject>Gene Transfer Techniques</subject><subject>Genetic Therapy</subject><subject>Genetic Vectors - genetics</subject><subject>Globins - genetics</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Humans</subject><subject>Interleukin 2</subject><subject>Lentivirus - genetics</subject><subject>Leukocyte Common Antigens - metabolism</subject><subject>Mice</subject><subject>Progenitor cells</subject><subject>Prostaglandin E</subject><subject>Prostaglandin E2</subject><subject>Severe combined immunodeficiency</subject><subject>Sickle cell disease</subject><subject>Stem cells</subject><subject>Supplements</subject><subject>Thalassemia</subject><subject>Toxicity</subject><subject>Transduction, Genetic</subject><subject>Transgenes</subject><subject>Transplantation, Heterologous</subject><subject>Transplants &amp; implants</subject><subject>Virus Internalization</subject><subject>Xenografts</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kF1LwzAYhYMoTqe_QJCA1635aNPlcozpBgMFp7clTd_MjDatSSoM_PFWnF6dc_HwHDgI3VCSUkLF_T49tPEdUkZokRKZEpafoAuaszwhhGWn_52KCboMYT82mktxjiZM0pEW7AJ9PfsuRLVrlKutw0vM8NppDypAwBtw0X5arxr8Bjp2Hm-9cqEedLTdCBtjtQWnD7gzeF4PTcSroVUOr6BVses7C9Fq_BKhxaMfj1s7cPZHtICmCVfozKgmwPUxp-j1YbldrJLN0-N6Md8kPeUiJrw2M1VxKQknBRe1pAIMY7LQitdcMk6Bg-CQgclAVZrJmSmEKSoKlS4Kxafo7tfb--5jgBDLfTd4N06WjMrZ-B_J5EjdHqmhaqEue29b5Q_l31n8Gz2LbrU</recordid><startdate>20180103</startdate><enddate>20180103</enddate><creator>Heffner, Garrett C</creator><creator>Bonner, Melissa</creator><creator>Christiansen, Lauryn</creator><creator>Pierciey, Francis J</creator><creator>Campbell, Dakota</creator><creator>Smurnyy, Yegor</creator><creator>Zhang, Wenliang</creator><creator>Hamel, Amanda</creator><creator>Shaw, Seema</creator><creator>Lewis, Gretchen</creator><creator>Goss, Kendrick A</creator><creator>Garijo, Olivia</creator><creator>Torbett, Bruce E</creator><creator>Horton, Holly</creator><creator>Finer, Mitchell H</creator><creator>Gregory, Philip D</creator><creator>Veres, Gabor</creator><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>K9.</scope></search><sort><creationdate>20180103</creationdate><title>Prostaglandin E 2 Increases Lentiviral Vector Transduction Efficiency of Adult Human Hematopoietic Stem and Progenitor Cells</title><author>Heffner, Garrett C ; Bonner, Melissa ; Christiansen, Lauryn ; Pierciey, Francis J ; Campbell, Dakota ; Smurnyy, Yegor ; Zhang, Wenliang ; Hamel, Amanda ; Shaw, Seema ; Lewis, Gretchen ; Goss, Kendrick A ; Garijo, Olivia ; Torbett, Bruce E ; Horton, Holly ; Finer, Mitchell H ; Gregory, Philip D ; Veres, Gabor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p136t-3df8ab399030736d916ef2297ca3d39231e3e63e4ef4eabc298f76f7b1ebc77a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anemia, Sickle Cell - genetics</topic><topic>Anemia, Sickle Cell - metabolism</topic><topic>Animals</topic><topic>Antigens, CD34 - metabolism</topic><topic>beta-Thalassemia - genetics</topic><topic>beta-Thalassemia - metabolism</topic><topic>CD34 antigen</topic><topic>Cell cycle</topic><topic>Cell Line</topic><topic>Cell viability</topic><topic>Copy number</topic><topic>Cytokines</topic><topic>Diabetes mellitus</topic><topic>Dinoprostone - metabolism</topic><topic>Experiments</topic><topic>Flow cytometry</topic><topic>Gene Library</topic><topic>Gene therapy</topic><topic>Gene Transfer Techniques</topic><topic>Genetic Therapy</topic><topic>Genetic Vectors - genetics</topic><topic>Globins - genetics</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Humans</topic><topic>Interleukin 2</topic><topic>Lentivirus - genetics</topic><topic>Leukocyte Common Antigens - metabolism</topic><topic>Mice</topic><topic>Progenitor cells</topic><topic>Prostaglandin E</topic><topic>Prostaglandin E2</topic><topic>Severe combined immunodeficiency</topic><topic>Sickle cell disease</topic><topic>Stem cells</topic><topic>Supplements</topic><topic>Thalassemia</topic><topic>Toxicity</topic><topic>Transduction, Genetic</topic><topic>Transgenes</topic><topic>Transplantation, Heterologous</topic><topic>Transplants &amp; implants</topic><topic>Virus Internalization</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heffner, Garrett C</creatorcontrib><creatorcontrib>Bonner, Melissa</creatorcontrib><creatorcontrib>Christiansen, Lauryn</creatorcontrib><creatorcontrib>Pierciey, Francis J</creatorcontrib><creatorcontrib>Campbell, Dakota</creatorcontrib><creatorcontrib>Smurnyy, Yegor</creatorcontrib><creatorcontrib>Zhang, Wenliang</creatorcontrib><creatorcontrib>Hamel, Amanda</creatorcontrib><creatorcontrib>Shaw, Seema</creatorcontrib><creatorcontrib>Lewis, Gretchen</creatorcontrib><creatorcontrib>Goss, Kendrick A</creatorcontrib><creatorcontrib>Garijo, Olivia</creatorcontrib><creatorcontrib>Torbett, Bruce E</creatorcontrib><creatorcontrib>Horton, Holly</creatorcontrib><creatorcontrib>Finer, Mitchell H</creatorcontrib><creatorcontrib>Gregory, Philip D</creatorcontrib><creatorcontrib>Veres, Gabor</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heffner, Garrett C</au><au>Bonner, Melissa</au><au>Christiansen, Lauryn</au><au>Pierciey, Francis J</au><au>Campbell, Dakota</au><au>Smurnyy, Yegor</au><au>Zhang, Wenliang</au><au>Hamel, Amanda</au><au>Shaw, Seema</au><au>Lewis, Gretchen</au><au>Goss, Kendrick A</au><au>Garijo, Olivia</au><au>Torbett, Bruce E</au><au>Horton, Holly</au><au>Finer, Mitchell H</au><au>Gregory, Philip D</au><au>Veres, Gabor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prostaglandin E 2 Increases Lentiviral Vector Transduction Efficiency of Adult Human Hematopoietic Stem and Progenitor Cells</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2018-01-03</date><risdate>2018</risdate><volume>26</volume><issue>1</issue><spage>320</spage><pages>320-</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>Gene therapy currently in development for hemoglobinopathies utilizes ex vivo lentiviral transduction of CD34 hematopoietic stem and progenitor cells (HSPCs). A small-molecule screen identified prostaglandin E (PGE ) as a positive mediator of lentiviral transduction of CD34 cells. Supplementation with PGE increased lentiviral vector (LVV) transduction of CD34 cells approximately 2-fold compared to control transduction methods with no effect on cell viability. Transduction efficiency was consistently increased in primary CD34 cells from multiple normal human donors and from patients with β-thalassemia or sickle cell disease. Notably, PGE increased transduction of repopulating human HSPCs in an immune-deficient (nonobese diabetic/severe combined immunodeficiency/interleukin-2 gamma receptor null [NSG]) xenotransplantation mouse model without evidence of in vivo toxicity, lineage bias, or a de novo bias of lentiviral integration sites. These data suggest that PGE improves lentiviral transduction and increases vector copy number, therefore resulting in increased transgene expression. As a result, PGE may be useful in clinical gene therapy applications using lentivirally modified HSPCs.</abstract><cop>United States</cop><pub>Elsevier Limited</pub><pmid>29102562</pmid><doi>10.1016/j.ymthe.2017.09.025</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-0016
ispartof Molecular therapy, 2018-01, Vol.26 (1), p.320
issn 1525-0016
1525-0024
language eng
recordid cdi_proquest_journals_2198017049
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Anemia, Sickle Cell - genetics
Anemia, Sickle Cell - metabolism
Animals
Antigens, CD34 - metabolism
beta-Thalassemia - genetics
beta-Thalassemia - metabolism
CD34 antigen
Cell cycle
Cell Line
Cell viability
Copy number
Cytokines
Diabetes mellitus
Dinoprostone - metabolism
Experiments
Flow cytometry
Gene Library
Gene therapy
Gene Transfer Techniques
Genetic Therapy
Genetic Vectors - genetics
Globins - genetics
Hematopoietic stem cells
Hematopoietic Stem Cells - metabolism
Humans
Interleukin 2
Lentivirus - genetics
Leukocyte Common Antigens - metabolism
Mice
Progenitor cells
Prostaglandin E
Prostaglandin E2
Severe combined immunodeficiency
Sickle cell disease
Stem cells
Supplements
Thalassemia
Toxicity
Transduction, Genetic
Transgenes
Transplantation, Heterologous
Transplants & implants
Virus Internalization
Xenografts
title Prostaglandin E 2 Increases Lentiviral Vector Transduction Efficiency of Adult Human Hematopoietic Stem and Progenitor Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prostaglandin%20E%202%20Increases%20Lentiviral%20Vector%20Transduction%20Efficiency%20of%20Adult%20Human%20Hematopoietic%20Stem%20and%20Progenitor%20Cells&rft.jtitle=Molecular%20therapy&rft.au=Heffner,%20Garrett%20C&rft.date=2018-01-03&rft.volume=26&rft.issue=1&rft.spage=320&rft.pages=320-&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2017.09.025&rft_dat=%3Cproquest_pubme%3E2198017049%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2198017049&rft_id=info:pmid/29102562&rfr_iscdi=true