Experimental and Theoretical Realization of Zenneck Wave-based Non-Radiative, Non-Coupled Wireless Power Transmission

A decade ago, non-radiative wireless power transmission re-emerged as a promising alternative to deliver electrical power to devices where a physical wiring proved to be unfeasible. However, existing approaches are neither scalable nor efficient when multiple devices are involved, as they are restri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-01
Hauptverfasser: Oruganti, Sai Kiran, Malik, Jagannath, Lee, Jongwon, Dipra, Paul, Park, Woojin, Lee, Bonyoung, Seo, Seoktae, Hak Sun Kim, Bien, Franklin, Thundat, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Oruganti, Sai Kiran
Malik, Jagannath
Lee, Jongwon
Dipra, Paul
Park, Woojin
Lee, Bonyoung
Seo, Seoktae
Hak Sun Kim
Bien, Franklin
Thundat, Thomas
description A decade ago, non-radiative wireless power transmission re-emerged as a promising alternative to deliver electrical power to devices where a physical wiring proved to be unfeasible. However, existing approaches are neither scalable nor efficient when multiple devices are involved, as they are restricted by factors like coupling and external environments. Zenneck waves are excited at interfaces, like surface plasmons and have the potential to deliver electrical power to devices placed on a conducting surface. Here, we demonstrate, efficient and long range delivery of electrical power by exciting nonradiative waves over metal surfaces to multiple loads. Our modeling and simulation using Maxwells equation with proper boundary conditions shows Zenneck type behavior for the excited waves and are in excellent agreement with experimental results. In conclusion, we physically realize a radically different power transfer system, based on a wave, whose existence has been fiercely debated for over a century.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2197687319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2197687319</sourcerecordid><originalsourceid>FETCH-proquest_journals_21976873193</originalsourceid><addsrcrecordid>eNqNjMEKwjAQBYMgWNR_CHi10Cba6rlUPIlIQfAiq91iNCY121bx6w3iB3h6DDO8HguElHG4mAkxYGOiaxRFIknFfC4D1uavGp26o2lAczAlLy5oHTbq7HmHoNUbGmUNtxU_oDF4vvE9dBiegLDkG2vCHZTKNx1Ov5jZttZe7ZVDjUR8a5_oeOHA0F0R-bMR61egCce_HbLJKi-ydVg7-2iRmuPVts54dRTxMk0WqYyX8r_qA4kHTOM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2197687319</pqid></control><display><type>article</type><title>Experimental and Theoretical Realization of Zenneck Wave-based Non-Radiative, Non-Coupled Wireless Power Transmission</title><source>Free E- Journals</source><creator>Oruganti, Sai Kiran ; Malik, Jagannath ; Lee, Jongwon ; Dipra, Paul ; Park, Woojin ; Lee, Bonyoung ; Seo, Seoktae ; Hak Sun Kim ; Bien, Franklin ; Thundat, Thomas</creator><creatorcontrib>Oruganti, Sai Kiran ; Malik, Jagannath ; Lee, Jongwon ; Dipra, Paul ; Park, Woojin ; Lee, Bonyoung ; Seo, Seoktae ; Hak Sun Kim ; Bien, Franklin ; Thundat, Thomas</creatorcontrib><description>A decade ago, non-radiative wireless power transmission re-emerged as a promising alternative to deliver electrical power to devices where a physical wiring proved to be unfeasible. However, existing approaches are neither scalable nor efficient when multiple devices are involved, as they are restricted by factors like coupling and external environments. Zenneck waves are excited at interfaces, like surface plasmons and have the potential to deliver electrical power to devices placed on a conducting surface. Here, we demonstrate, efficient and long range delivery of electrical power by exciting nonradiative waves over metal surfaces to multiple loads. Our modeling and simulation using Maxwells equation with proper boundary conditions shows Zenneck type behavior for the excited waves and are in excellent agreement with experimental results. In conclusion, we physically realize a radically different power transfer system, based on a wave, whose existence has been fiercely debated for over a century.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary conditions ; Computer simulation ; Metal surfaces ; Plasmons ; Wireless power transmission ; Wiring</subject><ispartof>arXiv.org, 2019-01</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Oruganti, Sai Kiran</creatorcontrib><creatorcontrib>Malik, Jagannath</creatorcontrib><creatorcontrib>Lee, Jongwon</creatorcontrib><creatorcontrib>Dipra, Paul</creatorcontrib><creatorcontrib>Park, Woojin</creatorcontrib><creatorcontrib>Lee, Bonyoung</creatorcontrib><creatorcontrib>Seo, Seoktae</creatorcontrib><creatorcontrib>Hak Sun Kim</creatorcontrib><creatorcontrib>Bien, Franklin</creatorcontrib><creatorcontrib>Thundat, Thomas</creatorcontrib><title>Experimental and Theoretical Realization of Zenneck Wave-based Non-Radiative, Non-Coupled Wireless Power Transmission</title><title>arXiv.org</title><description>A decade ago, non-radiative wireless power transmission re-emerged as a promising alternative to deliver electrical power to devices where a physical wiring proved to be unfeasible. However, existing approaches are neither scalable nor efficient when multiple devices are involved, as they are restricted by factors like coupling and external environments. Zenneck waves are excited at interfaces, like surface plasmons and have the potential to deliver electrical power to devices placed on a conducting surface. Here, we demonstrate, efficient and long range delivery of electrical power by exciting nonradiative waves over metal surfaces to multiple loads. Our modeling and simulation using Maxwells equation with proper boundary conditions shows Zenneck type behavior for the excited waves and are in excellent agreement with experimental results. In conclusion, we physically realize a radically different power transfer system, based on a wave, whose existence has been fiercely debated for over a century.</description><subject>Boundary conditions</subject><subject>Computer simulation</subject><subject>Metal surfaces</subject><subject>Plasmons</subject><subject>Wireless power transmission</subject><subject>Wiring</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjMEKwjAQBYMgWNR_CHi10Cba6rlUPIlIQfAiq91iNCY121bx6w3iB3h6DDO8HguElHG4mAkxYGOiaxRFIknFfC4D1uavGp26o2lAczAlLy5oHTbq7HmHoNUbGmUNtxU_oDF4vvE9dBiegLDkG2vCHZTKNx1Ov5jZttZe7ZVDjUR8a5_oeOHA0F0R-bMR61egCce_HbLJKi-ydVg7-2iRmuPVts54dRTxMk0WqYyX8r_qA4kHTOM</recordid><startdate>20190122</startdate><enddate>20190122</enddate><creator>Oruganti, Sai Kiran</creator><creator>Malik, Jagannath</creator><creator>Lee, Jongwon</creator><creator>Dipra, Paul</creator><creator>Park, Woojin</creator><creator>Lee, Bonyoung</creator><creator>Seo, Seoktae</creator><creator>Hak Sun Kim</creator><creator>Bien, Franklin</creator><creator>Thundat, Thomas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190122</creationdate><title>Experimental and Theoretical Realization of Zenneck Wave-based Non-Radiative, Non-Coupled Wireless Power Transmission</title><author>Oruganti, Sai Kiran ; Malik, Jagannath ; Lee, Jongwon ; Dipra, Paul ; Park, Woojin ; Lee, Bonyoung ; Seo, Seoktae ; Hak Sun Kim ; Bien, Franklin ; Thundat, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21976873193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary conditions</topic><topic>Computer simulation</topic><topic>Metal surfaces</topic><topic>Plasmons</topic><topic>Wireless power transmission</topic><topic>Wiring</topic><toplevel>online_resources</toplevel><creatorcontrib>Oruganti, Sai Kiran</creatorcontrib><creatorcontrib>Malik, Jagannath</creatorcontrib><creatorcontrib>Lee, Jongwon</creatorcontrib><creatorcontrib>Dipra, Paul</creatorcontrib><creatorcontrib>Park, Woojin</creatorcontrib><creatorcontrib>Lee, Bonyoung</creatorcontrib><creatorcontrib>Seo, Seoktae</creatorcontrib><creatorcontrib>Hak Sun Kim</creatorcontrib><creatorcontrib>Bien, Franklin</creatorcontrib><creatorcontrib>Thundat, Thomas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oruganti, Sai Kiran</au><au>Malik, Jagannath</au><au>Lee, Jongwon</au><au>Dipra, Paul</au><au>Park, Woojin</au><au>Lee, Bonyoung</au><au>Seo, Seoktae</au><au>Hak Sun Kim</au><au>Bien, Franklin</au><au>Thundat, Thomas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Experimental and Theoretical Realization of Zenneck Wave-based Non-Radiative, Non-Coupled Wireless Power Transmission</atitle><jtitle>arXiv.org</jtitle><date>2019-01-22</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>A decade ago, non-radiative wireless power transmission re-emerged as a promising alternative to deliver electrical power to devices where a physical wiring proved to be unfeasible. However, existing approaches are neither scalable nor efficient when multiple devices are involved, as they are restricted by factors like coupling and external environments. Zenneck waves are excited at interfaces, like surface plasmons and have the potential to deliver electrical power to devices placed on a conducting surface. Here, we demonstrate, efficient and long range delivery of electrical power by exciting nonradiative waves over metal surfaces to multiple loads. Our modeling and simulation using Maxwells equation with proper boundary conditions shows Zenneck type behavior for the excited waves and are in excellent agreement with experimental results. In conclusion, we physically realize a radically different power transfer system, based on a wave, whose existence has been fiercely debated for over a century.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2197687319
source Free E- Journals
subjects Boundary conditions
Computer simulation
Metal surfaces
Plasmons
Wireless power transmission
Wiring
title Experimental and Theoretical Realization of Zenneck Wave-based Non-Radiative, Non-Coupled Wireless Power Transmission
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A45%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Experimental%20and%20Theoretical%20Realization%20of%20Zenneck%20Wave-based%20Non-Radiative,%20Non-Coupled%20Wireless%20Power%20Transmission&rft.jtitle=arXiv.org&rft.au=Oruganti,%20Sai%20Kiran&rft.date=2019-01-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2197687319%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2197687319&rft_id=info:pmid/&rfr_iscdi=true