Fuzzy clustering using salp swarm algorithm for automobile insurance fraud detection

In this paper, a hybrid fuzzy clustering techniques using Salp Swarm Algorithm (SSA) is proposed. The proposed fuzzy clustering method is used to optimize the cluster centroids obtained as an under sampling method. The performance of the proposed fuzzy clustering method is compared with some well-kn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2019-01, Vol.36 (3), p.2333-2344
Hauptverfasser: Majhi, Santosh Kumar, Bhatachharya, Subho, Pradhan, Rosy, Biswal, Shubhra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2344
container_issue 3
container_start_page 2333
container_title Journal of intelligent & fuzzy systems
container_volume 36
creator Majhi, Santosh Kumar
Bhatachharya, Subho
Pradhan, Rosy
Biswal, Shubhra
description In this paper, a hybrid fuzzy clustering techniques using Salp Swarm Algorithm (SSA) is proposed. The proposed fuzzy clustering method is used to optimize the cluster centroids obtained as an under sampling method. The performance of the proposed fuzzy clustering method is compared with some well-known clustering algorithms to shows the superiority of the proposed clustering algorithm. In addition, a novel hybrid Automobile Insurance Fraud Detection System is proposed in which undersampling of the majority class is performed by using the proposed fuzzy clustering algorithm which eliminates the outliers from the majority class samples. The balanced dataset for automobile fraud detection obtained after undersampling undergoes classification. Different classifiers used for this purpose are Random Forest Classifier, Logistic Regression Classifier and XGBoost Classifier. The performance of each of the three classifiers is evaluated by considering different performance metrics such as sensitivity, accuracy and specificity. The proposed fuzzy clustering method along with XGBoost outperforms the other methods presented.
doi_str_mv 10.3233/JIFS-169944
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2197487868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2197487868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-55bc96b4fe441cd517adde0acd9784795590c770ab9e429b671e94a347abca723</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsn_0DAo6wmm6_NUYqtlYIH6zm8m83WLbubmg-k_fW21MvMHIYZeBC6p-SJlYw9vy_nnwWVWnN-gSa0UqKotFSXx0wkL2jJ5TW6iXFLCFWiJBO0nufDYY9tn2NyoRs3OMeTRuh3OP5CGDD0Gx-69D3g1gcMOfnB113vcDfGHGC0DrcBcoMbl5xNnR9v0VULfXR3_z5FX_PX9eytWH0slrOXVWGZ1KkQorZa1rx1nFPbCKqgaRwB22hVcaWF0MQqRaDWjpe6loo6zYFxBbUFVbIpejjv7oL_yS4ms_U5jMdLU1KteKUqWR1bj-eWDT7G4FqzC90AYW8oMSds5oTNnLGxP3_xYSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2197487868</pqid></control><display><type>article</type><title>Fuzzy clustering using salp swarm algorithm for automobile insurance fraud detection</title><source>EBSCOhost Business Source Complete</source><creator>Majhi, Santosh Kumar ; Bhatachharya, Subho ; Pradhan, Rosy ; Biswal, Shubhra</creator><contributor>El-Alfy, El-Sayed M. ; Thampi, Sabu M.</contributor><creatorcontrib>Majhi, Santosh Kumar ; Bhatachharya, Subho ; Pradhan, Rosy ; Biswal, Shubhra ; El-Alfy, El-Sayed M. ; Thampi, Sabu M.</creatorcontrib><description>In this paper, a hybrid fuzzy clustering techniques using Salp Swarm Algorithm (SSA) is proposed. The proposed fuzzy clustering method is used to optimize the cluster centroids obtained as an under sampling method. The performance of the proposed fuzzy clustering method is compared with some well-known clustering algorithms to shows the superiority of the proposed clustering algorithm. In addition, a novel hybrid Automobile Insurance Fraud Detection System is proposed in which undersampling of the majority class is performed by using the proposed fuzzy clustering algorithm which eliminates the outliers from the majority class samples. The balanced dataset for automobile fraud detection obtained after undersampling undergoes classification. Different classifiers used for this purpose are Random Forest Classifier, Logistic Regression Classifier and XGBoost Classifier. The performance of each of the three classifiers is evaluated by considering different performance metrics such as sensitivity, accuracy and specificity. The proposed fuzzy clustering method along with XGBoost outperforms the other methods presented.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-169944</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Automobile insurance ; Centroids ; Classifiers ; Clustering ; Decision support systems ; Hybrid vehicles ; Insurance ; Insurance fraud ; Manufacturing cells ; Outliers (statistics) ; Performance measurement ; Sensitivity analysis</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2019-01, Vol.36 (3), p.2333-2344</ispartof><rights>Copyright IOS Press BV 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-55bc96b4fe441cd517adde0acd9784795590c770ab9e429b671e94a347abca723</citedby><cites>FETCH-LOGICAL-c369t-55bc96b4fe441cd517adde0acd9784795590c770ab9e429b671e94a347abca723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>El-Alfy, El-Sayed M.</contributor><contributor>Thampi, Sabu M.</contributor><creatorcontrib>Majhi, Santosh Kumar</creatorcontrib><creatorcontrib>Bhatachharya, Subho</creatorcontrib><creatorcontrib>Pradhan, Rosy</creatorcontrib><creatorcontrib>Biswal, Shubhra</creatorcontrib><title>Fuzzy clustering using salp swarm algorithm for automobile insurance fraud detection</title><title>Journal of intelligent &amp; fuzzy systems</title><description>In this paper, a hybrid fuzzy clustering techniques using Salp Swarm Algorithm (SSA) is proposed. The proposed fuzzy clustering method is used to optimize the cluster centroids obtained as an under sampling method. The performance of the proposed fuzzy clustering method is compared with some well-known clustering algorithms to shows the superiority of the proposed clustering algorithm. In addition, a novel hybrid Automobile Insurance Fraud Detection System is proposed in which undersampling of the majority class is performed by using the proposed fuzzy clustering algorithm which eliminates the outliers from the majority class samples. The balanced dataset for automobile fraud detection obtained after undersampling undergoes classification. Different classifiers used for this purpose are Random Forest Classifier, Logistic Regression Classifier and XGBoost Classifier. The performance of each of the three classifiers is evaluated by considering different performance metrics such as sensitivity, accuracy and specificity. The proposed fuzzy clustering method along with XGBoost outperforms the other methods presented.</description><subject>Algorithms</subject><subject>Automobile insurance</subject><subject>Centroids</subject><subject>Classifiers</subject><subject>Clustering</subject><subject>Decision support systems</subject><subject>Hybrid vehicles</subject><subject>Insurance</subject><subject>Insurance fraud</subject><subject>Manufacturing cells</subject><subject>Outliers (statistics)</subject><subject>Performance measurement</subject><subject>Sensitivity analysis</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEYhIMoWKsn_0DAo6wmm6_NUYqtlYIH6zm8m83WLbubmg-k_fW21MvMHIYZeBC6p-SJlYw9vy_nnwWVWnN-gSa0UqKotFSXx0wkL2jJ5TW6iXFLCFWiJBO0nufDYY9tn2NyoRs3OMeTRuh3OP5CGDD0Gx-69D3g1gcMOfnB113vcDfGHGC0DrcBcoMbl5xNnR9v0VULfXR3_z5FX_PX9eytWH0slrOXVWGZ1KkQorZa1rx1nFPbCKqgaRwB22hVcaWF0MQqRaDWjpe6loo6zYFxBbUFVbIpejjv7oL_yS4ms_U5jMdLU1KteKUqWR1bj-eWDT7G4FqzC90AYW8oMSds5oTNnLGxP3_xYSg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Majhi, Santosh Kumar</creator><creator>Bhatachharya, Subho</creator><creator>Pradhan, Rosy</creator><creator>Biswal, Shubhra</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190101</creationdate><title>Fuzzy clustering using salp swarm algorithm for automobile insurance fraud detection</title><author>Majhi, Santosh Kumar ; Bhatachharya, Subho ; Pradhan, Rosy ; Biswal, Shubhra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-55bc96b4fe441cd517adde0acd9784795590c770ab9e429b671e94a347abca723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Automobile insurance</topic><topic>Centroids</topic><topic>Classifiers</topic><topic>Clustering</topic><topic>Decision support systems</topic><topic>Hybrid vehicles</topic><topic>Insurance</topic><topic>Insurance fraud</topic><topic>Manufacturing cells</topic><topic>Outliers (statistics)</topic><topic>Performance measurement</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majhi, Santosh Kumar</creatorcontrib><creatorcontrib>Bhatachharya, Subho</creatorcontrib><creatorcontrib>Pradhan, Rosy</creatorcontrib><creatorcontrib>Biswal, Shubhra</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majhi, Santosh Kumar</au><au>Bhatachharya, Subho</au><au>Pradhan, Rosy</au><au>Biswal, Shubhra</au><au>El-Alfy, El-Sayed M.</au><au>Thampi, Sabu M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy clustering using salp swarm algorithm for automobile insurance fraud detection</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>36</volume><issue>3</issue><spage>2333</spage><epage>2344</epage><pages>2333-2344</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>In this paper, a hybrid fuzzy clustering techniques using Salp Swarm Algorithm (SSA) is proposed. The proposed fuzzy clustering method is used to optimize the cluster centroids obtained as an under sampling method. The performance of the proposed fuzzy clustering method is compared with some well-known clustering algorithms to shows the superiority of the proposed clustering algorithm. In addition, a novel hybrid Automobile Insurance Fraud Detection System is proposed in which undersampling of the majority class is performed by using the proposed fuzzy clustering algorithm which eliminates the outliers from the majority class samples. The balanced dataset for automobile fraud detection obtained after undersampling undergoes classification. Different classifiers used for this purpose are Random Forest Classifier, Logistic Regression Classifier and XGBoost Classifier. The performance of each of the three classifiers is evaluated by considering different performance metrics such as sensitivity, accuracy and specificity. The proposed fuzzy clustering method along with XGBoost outperforms the other methods presented.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-169944</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2019-01, Vol.36 (3), p.2333-2344
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2197487868
source EBSCOhost Business Source Complete
subjects Algorithms
Automobile insurance
Centroids
Classifiers
Clustering
Decision support systems
Hybrid vehicles
Insurance
Insurance fraud
Manufacturing cells
Outliers (statistics)
Performance measurement
Sensitivity analysis
title Fuzzy clustering using salp swarm algorithm for automobile insurance fraud detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A04%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20clustering%20using%20salp%20swarm%20algorithm%20for%20automobile%20insurance%20fraud%20detection&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Majhi,%20Santosh%20Kumar&rft.date=2019-01-01&rft.volume=36&rft.issue=3&rft.spage=2333&rft.epage=2344&rft.pages=2333-2344&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-169944&rft_dat=%3Cproquest_cross%3E2197487868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2197487868&rft_id=info:pmid/&rfr_iscdi=true