Fuzzy clustering using salp swarm algorithm for automobile insurance fraud detection
In this paper, a hybrid fuzzy clustering techniques using Salp Swarm Algorithm (SSA) is proposed. The proposed fuzzy clustering method is used to optimize the cluster centroids obtained as an under sampling method. The performance of the proposed fuzzy clustering method is compared with some well-kn...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2019-01, Vol.36 (3), p.2333-2344 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2344 |
---|---|
container_issue | 3 |
container_start_page | 2333 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 36 |
creator | Majhi, Santosh Kumar Bhatachharya, Subho Pradhan, Rosy Biswal, Shubhra |
description | In this paper, a hybrid fuzzy clustering techniques using Salp Swarm Algorithm (SSA) is proposed. The proposed fuzzy clustering method is used to optimize the cluster centroids obtained as an under sampling method. The performance of the proposed fuzzy clustering method is compared with some well-known clustering algorithms to shows the superiority of the proposed clustering algorithm. In addition, a novel hybrid Automobile Insurance Fraud Detection System is proposed in which undersampling of the majority class is performed by using the proposed fuzzy clustering algorithm which eliminates the outliers from the majority class samples. The balanced dataset for automobile fraud detection obtained after undersampling undergoes classification. Different classifiers used for this purpose are Random Forest Classifier, Logistic Regression Classifier and XGBoost Classifier. The performance of each of the three classifiers is evaluated by considering different performance metrics such as sensitivity, accuracy and specificity. The proposed fuzzy clustering method along with XGBoost outperforms the other methods presented. |
doi_str_mv | 10.3233/JIFS-169944 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2197487868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2197487868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-55bc96b4fe441cd517adde0acd9784795590c770ab9e429b671e94a347abca723</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsn_0DAo6wmm6_NUYqtlYIH6zm8m83WLbubmg-k_fW21MvMHIYZeBC6p-SJlYw9vy_nnwWVWnN-gSa0UqKotFSXx0wkL2jJ5TW6iXFLCFWiJBO0nufDYY9tn2NyoRs3OMeTRuh3OP5CGDD0Gx-69D3g1gcMOfnB113vcDfGHGC0DrcBcoMbl5xNnR9v0VULfXR3_z5FX_PX9eytWH0slrOXVWGZ1KkQorZa1rx1nFPbCKqgaRwB22hVcaWF0MQqRaDWjpe6loo6zYFxBbUFVbIpejjv7oL_yS4ms_U5jMdLU1KteKUqWR1bj-eWDT7G4FqzC90AYW8oMSds5oTNnLGxP3_xYSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2197487868</pqid></control><display><type>article</type><title>Fuzzy clustering using salp swarm algorithm for automobile insurance fraud detection</title><source>EBSCOhost Business Source Complete</source><creator>Majhi, Santosh Kumar ; Bhatachharya, Subho ; Pradhan, Rosy ; Biswal, Shubhra</creator><contributor>El-Alfy, El-Sayed M. ; Thampi, Sabu M.</contributor><creatorcontrib>Majhi, Santosh Kumar ; Bhatachharya, Subho ; Pradhan, Rosy ; Biswal, Shubhra ; El-Alfy, El-Sayed M. ; Thampi, Sabu M.</creatorcontrib><description>In this paper, a hybrid fuzzy clustering techniques using Salp Swarm Algorithm (SSA) is proposed. The proposed fuzzy clustering method is used to optimize the cluster centroids obtained as an under sampling method. The performance of the proposed fuzzy clustering method is compared with some well-known clustering algorithms to shows the superiority of the proposed clustering algorithm. In addition, a novel hybrid Automobile Insurance Fraud Detection System is proposed in which undersampling of the majority class is performed by using the proposed fuzzy clustering algorithm which eliminates the outliers from the majority class samples. The balanced dataset for automobile fraud detection obtained after undersampling undergoes classification. Different classifiers used for this purpose are Random Forest Classifier, Logistic Regression Classifier and XGBoost Classifier. The performance of each of the three classifiers is evaluated by considering different performance metrics such as sensitivity, accuracy and specificity. The proposed fuzzy clustering method along with XGBoost outperforms the other methods presented.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-169944</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Automobile insurance ; Centroids ; Classifiers ; Clustering ; Decision support systems ; Hybrid vehicles ; Insurance ; Insurance fraud ; Manufacturing cells ; Outliers (statistics) ; Performance measurement ; Sensitivity analysis</subject><ispartof>Journal of intelligent & fuzzy systems, 2019-01, Vol.36 (3), p.2333-2344</ispartof><rights>Copyright IOS Press BV 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-55bc96b4fe441cd517adde0acd9784795590c770ab9e429b671e94a347abca723</citedby><cites>FETCH-LOGICAL-c369t-55bc96b4fe441cd517adde0acd9784795590c770ab9e429b671e94a347abca723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>El-Alfy, El-Sayed M.</contributor><contributor>Thampi, Sabu M.</contributor><creatorcontrib>Majhi, Santosh Kumar</creatorcontrib><creatorcontrib>Bhatachharya, Subho</creatorcontrib><creatorcontrib>Pradhan, Rosy</creatorcontrib><creatorcontrib>Biswal, Shubhra</creatorcontrib><title>Fuzzy clustering using salp swarm algorithm for automobile insurance fraud detection</title><title>Journal of intelligent & fuzzy systems</title><description>In this paper, a hybrid fuzzy clustering techniques using Salp Swarm Algorithm (SSA) is proposed. The proposed fuzzy clustering method is used to optimize the cluster centroids obtained as an under sampling method. The performance of the proposed fuzzy clustering method is compared with some well-known clustering algorithms to shows the superiority of the proposed clustering algorithm. In addition, a novel hybrid Automobile Insurance Fraud Detection System is proposed in which undersampling of the majority class is performed by using the proposed fuzzy clustering algorithm which eliminates the outliers from the majority class samples. The balanced dataset for automobile fraud detection obtained after undersampling undergoes classification. Different classifiers used for this purpose are Random Forest Classifier, Logistic Regression Classifier and XGBoost Classifier. The performance of each of the three classifiers is evaluated by considering different performance metrics such as sensitivity, accuracy and specificity. The proposed fuzzy clustering method along with XGBoost outperforms the other methods presented.</description><subject>Algorithms</subject><subject>Automobile insurance</subject><subject>Centroids</subject><subject>Classifiers</subject><subject>Clustering</subject><subject>Decision support systems</subject><subject>Hybrid vehicles</subject><subject>Insurance</subject><subject>Insurance fraud</subject><subject>Manufacturing cells</subject><subject>Outliers (statistics)</subject><subject>Performance measurement</subject><subject>Sensitivity analysis</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEYhIMoWKsn_0DAo6wmm6_NUYqtlYIH6zm8m83WLbubmg-k_fW21MvMHIYZeBC6p-SJlYw9vy_nnwWVWnN-gSa0UqKotFSXx0wkL2jJ5TW6iXFLCFWiJBO0nufDYY9tn2NyoRs3OMeTRuh3OP5CGDD0Gx-69D3g1gcMOfnB113vcDfGHGC0DrcBcoMbl5xNnR9v0VULfXR3_z5FX_PX9eytWH0slrOXVWGZ1KkQorZa1rx1nFPbCKqgaRwB22hVcaWF0MQqRaDWjpe6loo6zYFxBbUFVbIpejjv7oL_yS4ms_U5jMdLU1KteKUqWR1bj-eWDT7G4FqzC90AYW8oMSds5oTNnLGxP3_xYSg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Majhi, Santosh Kumar</creator><creator>Bhatachharya, Subho</creator><creator>Pradhan, Rosy</creator><creator>Biswal, Shubhra</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190101</creationdate><title>Fuzzy clustering using salp swarm algorithm for automobile insurance fraud detection</title><author>Majhi, Santosh Kumar ; Bhatachharya, Subho ; Pradhan, Rosy ; Biswal, Shubhra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-55bc96b4fe441cd517adde0acd9784795590c770ab9e429b671e94a347abca723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Automobile insurance</topic><topic>Centroids</topic><topic>Classifiers</topic><topic>Clustering</topic><topic>Decision support systems</topic><topic>Hybrid vehicles</topic><topic>Insurance</topic><topic>Insurance fraud</topic><topic>Manufacturing cells</topic><topic>Outliers (statistics)</topic><topic>Performance measurement</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majhi, Santosh Kumar</creatorcontrib><creatorcontrib>Bhatachharya, Subho</creatorcontrib><creatorcontrib>Pradhan, Rosy</creatorcontrib><creatorcontrib>Biswal, Shubhra</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majhi, Santosh Kumar</au><au>Bhatachharya, Subho</au><au>Pradhan, Rosy</au><au>Biswal, Shubhra</au><au>El-Alfy, El-Sayed M.</au><au>Thampi, Sabu M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy clustering using salp swarm algorithm for automobile insurance fraud detection</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>36</volume><issue>3</issue><spage>2333</spage><epage>2344</epage><pages>2333-2344</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>In this paper, a hybrid fuzzy clustering techniques using Salp Swarm Algorithm (SSA) is proposed. The proposed fuzzy clustering method is used to optimize the cluster centroids obtained as an under sampling method. The performance of the proposed fuzzy clustering method is compared with some well-known clustering algorithms to shows the superiority of the proposed clustering algorithm. In addition, a novel hybrid Automobile Insurance Fraud Detection System is proposed in which undersampling of the majority class is performed by using the proposed fuzzy clustering algorithm which eliminates the outliers from the majority class samples. The balanced dataset for automobile fraud detection obtained after undersampling undergoes classification. Different classifiers used for this purpose are Random Forest Classifier, Logistic Regression Classifier and XGBoost Classifier. The performance of each of the three classifiers is evaluated by considering different performance metrics such as sensitivity, accuracy and specificity. The proposed fuzzy clustering method along with XGBoost outperforms the other methods presented.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-169944</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2019-01, Vol.36 (3), p.2333-2344 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_2197487868 |
source | EBSCOhost Business Source Complete |
subjects | Algorithms Automobile insurance Centroids Classifiers Clustering Decision support systems Hybrid vehicles Insurance Insurance fraud Manufacturing cells Outliers (statistics) Performance measurement Sensitivity analysis |
title | Fuzzy clustering using salp swarm algorithm for automobile insurance fraud detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A04%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20clustering%20using%20salp%20swarm%20algorithm%20for%20automobile%20insurance%20fraud%20detection&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Majhi,%20Santosh%20Kumar&rft.date=2019-01-01&rft.volume=36&rft.issue=3&rft.spage=2333&rft.epage=2344&rft.pages=2333-2344&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-169944&rft_dat=%3Cproquest_cross%3E2197487868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2197487868&rft_id=info:pmid/&rfr_iscdi=true |