Reinvestigation of the Bulk Modulus for fcc Al using a Helmholtz Energy Approach
While extensive studies on the bulk modulus of fcc Al have been conducted, there still exist controversies regarding to the experimental values. In the present work, we adopted a Helmholtz energy approach based on the Morse function, the free electron Fermi gas model, as well as a modified Debye–Grü...
Gespeichert in:
Veröffentlicht in: | International journal of thermophysics 2019-04, Vol.40 (4), p.1-15, Article 42 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | International journal of thermophysics |
container_volume | 40 |
creator | Wu, Xue-Ting Xu, Zhi-Feng Zhou, Xin-Ran Wang, Hao Lu, Xiao-Gang |
description | While extensive studies on the bulk modulus of fcc Al have been conducted, there still exist controversies regarding to the experimental values. In the present work, we adopted a Helmholtz energy approach based on the Morse function, the free electron Fermi gas model, as well as a modified Debye–Grüneisen model ensuring intrinsic thermodynamic relationship satisfied. To identify consistent bulk modulus data, all the model parameters for fcc Al were evaluated by using comprehensively available experimental data on heat capacity, elastic modulus, thermal expansivity, molar volume, etc., over wide temperature and pressure ranges. Reasonable agreements have been achieved in this work without inconsistency among various thermodynamic and thermophysical properties. Our calculated bulk modulus of fcc Al agrees well with the data reported by Kamm and Alers, Gerlich and Fisher, Ho and Ruoff and the assessment done by Wang and Reeber. However, it is impossible to reconcile the parameters to fit the recent data from Raju et al., as well as the results from Tallon and Wolfenden due to the intrinsic thermodynamic constraints. |
doi_str_mv | 10.1007/s10765-019-2503-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2197408677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2197408677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-40a2ea7988d2b7165fe155919722c33dc1009a12115396b12238822cce07dd593</originalsourceid><addsrcrecordid>eNp1kE1LwzAYx4MoOKcfwFvAczRPsjTNcY7phIkiCt5ClqZdZ9fMpBXmpzejgidPz-H_xvND6BLoNVAqbyJQmQlCQREmKCfyCI1ASEaUyOQxGiVBEMXy91N0FuOGUqqk4iP0_OLq9svFrq5MV_sW-xJ3a4dv--YDP_qib_qISx9waS2eNriPdVthgxeu2a59033jeetCtcfT3S54Y9fn6KQ0TXQXv3eM3u7mr7MFWT7dP8ymS2K54B2ZUMOckSrPC7aSkInSgRAKlGTMcl7Y9JUywAAEV9kKGON5niTrqCwKofgYXQ29afazTw_oje9DmyY1Sy0TmmdSJhcMLht8jMGVehfqrQl7DVQfwOkBnE589AGcPmTYkInJ21Yu_DX_H_oBg_Ruhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2197408677</pqid></control><display><type>article</type><title>Reinvestigation of the Bulk Modulus for fcc Al using a Helmholtz Energy Approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wu, Xue-Ting ; Xu, Zhi-Feng ; Zhou, Xin-Ran ; Wang, Hao ; Lu, Xiao-Gang</creator><creatorcontrib>Wu, Xue-Ting ; Xu, Zhi-Feng ; Zhou, Xin-Ran ; Wang, Hao ; Lu, Xiao-Gang</creatorcontrib><description>While extensive studies on the bulk modulus of fcc Al have been conducted, there still exist controversies regarding to the experimental values. In the present work, we adopted a Helmholtz energy approach based on the Morse function, the free electron Fermi gas model, as well as a modified Debye–Grüneisen model ensuring intrinsic thermodynamic relationship satisfied. To identify consistent bulk modulus data, all the model parameters for fcc Al were evaluated by using comprehensively available experimental data on heat capacity, elastic modulus, thermal expansivity, molar volume, etc., over wide temperature and pressure ranges. Reasonable agreements have been achieved in this work without inconsistency among various thermodynamic and thermophysical properties. Our calculated bulk modulus of fcc Al agrees well with the data reported by Kamm and Alers, Gerlich and Fisher, Ho and Ruoff and the assessment done by Wang and Reeber. However, it is impossible to reconcile the parameters to fit the recent data from Raju et al., as well as the results from Tallon and Wolfenden due to the intrinsic thermodynamic constraints.</description><identifier>ISSN: 0195-928X</identifier><identifier>EISSN: 1572-9567</identifier><identifier>DOI: 10.1007/s10765-019-2503-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bulk modulus ; Classical Mechanics ; Condensed Matter Physics ; Free electrons ; Geophysics ; Industrial Chemistry/Chemical Engineering ; Mathematical models ; Modulus of elasticity ; Molar volume ; Parameter identification ; Physical Chemistry ; Physics ; Physics and Astronomy ; Thermodynamics ; Thermophysical properties</subject><ispartof>International journal of thermophysics, 2019-04, Vol.40 (4), p.1-15, Article 42</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-40a2ea7988d2b7165fe155919722c33dc1009a12115396b12238822cce07dd593</citedby><cites>FETCH-LOGICAL-c353t-40a2ea7988d2b7165fe155919722c33dc1009a12115396b12238822cce07dd593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10765-019-2503-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10765-019-2503-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wu, Xue-Ting</creatorcontrib><creatorcontrib>Xu, Zhi-Feng</creatorcontrib><creatorcontrib>Zhou, Xin-Ran</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Lu, Xiao-Gang</creatorcontrib><title>Reinvestigation of the Bulk Modulus for fcc Al using a Helmholtz Energy Approach</title><title>International journal of thermophysics</title><addtitle>Int J Thermophys</addtitle><description>While extensive studies on the bulk modulus of fcc Al have been conducted, there still exist controversies regarding to the experimental values. In the present work, we adopted a Helmholtz energy approach based on the Morse function, the free electron Fermi gas model, as well as a modified Debye–Grüneisen model ensuring intrinsic thermodynamic relationship satisfied. To identify consistent bulk modulus data, all the model parameters for fcc Al were evaluated by using comprehensively available experimental data on heat capacity, elastic modulus, thermal expansivity, molar volume, etc., over wide temperature and pressure ranges. Reasonable agreements have been achieved in this work without inconsistency among various thermodynamic and thermophysical properties. Our calculated bulk modulus of fcc Al agrees well with the data reported by Kamm and Alers, Gerlich and Fisher, Ho and Ruoff and the assessment done by Wang and Reeber. However, it is impossible to reconcile the parameters to fit the recent data from Raju et al., as well as the results from Tallon and Wolfenden due to the intrinsic thermodynamic constraints.</description><subject>Bulk modulus</subject><subject>Classical Mechanics</subject><subject>Condensed Matter Physics</subject><subject>Free electrons</subject><subject>Geophysics</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Mathematical models</subject><subject>Modulus of elasticity</subject><subject>Molar volume</subject><subject>Parameter identification</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Thermodynamics</subject><subject>Thermophysical properties</subject><issn>0195-928X</issn><issn>1572-9567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LwzAYx4MoOKcfwFvAczRPsjTNcY7phIkiCt5ClqZdZ9fMpBXmpzejgidPz-H_xvND6BLoNVAqbyJQmQlCQREmKCfyCI1ASEaUyOQxGiVBEMXy91N0FuOGUqqk4iP0_OLq9svFrq5MV_sW-xJ3a4dv--YDP_qib_qISx9waS2eNriPdVthgxeu2a59033jeetCtcfT3S54Y9fn6KQ0TXQXv3eM3u7mr7MFWT7dP8ymS2K54B2ZUMOckSrPC7aSkInSgRAKlGTMcl7Y9JUywAAEV9kKGON5niTrqCwKofgYXQ29afazTw_oje9DmyY1Sy0TmmdSJhcMLht8jMGVehfqrQl7DVQfwOkBnE589AGcPmTYkInJ21Yu_DX_H_oBg_Ruhg</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Wu, Xue-Ting</creator><creator>Xu, Zhi-Feng</creator><creator>Zhou, Xin-Ran</creator><creator>Wang, Hao</creator><creator>Lu, Xiao-Gang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190401</creationdate><title>Reinvestigation of the Bulk Modulus for fcc Al using a Helmholtz Energy Approach</title><author>Wu, Xue-Ting ; Xu, Zhi-Feng ; Zhou, Xin-Ran ; Wang, Hao ; Lu, Xiao-Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-40a2ea7988d2b7165fe155919722c33dc1009a12115396b12238822cce07dd593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bulk modulus</topic><topic>Classical Mechanics</topic><topic>Condensed Matter Physics</topic><topic>Free electrons</topic><topic>Geophysics</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Mathematical models</topic><topic>Modulus of elasticity</topic><topic>Molar volume</topic><topic>Parameter identification</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Thermodynamics</topic><topic>Thermophysical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xue-Ting</creatorcontrib><creatorcontrib>Xu, Zhi-Feng</creatorcontrib><creatorcontrib>Zhou, Xin-Ran</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Lu, Xiao-Gang</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xue-Ting</au><au>Xu, Zhi-Feng</au><au>Zhou, Xin-Ran</au><au>Wang, Hao</au><au>Lu, Xiao-Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinvestigation of the Bulk Modulus for fcc Al using a Helmholtz Energy Approach</atitle><jtitle>International journal of thermophysics</jtitle><stitle>Int J Thermophys</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>40</volume><issue>4</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>42</artnum><issn>0195-928X</issn><eissn>1572-9567</eissn><abstract>While extensive studies on the bulk modulus of fcc Al have been conducted, there still exist controversies regarding to the experimental values. In the present work, we adopted a Helmholtz energy approach based on the Morse function, the free electron Fermi gas model, as well as a modified Debye–Grüneisen model ensuring intrinsic thermodynamic relationship satisfied. To identify consistent bulk modulus data, all the model parameters for fcc Al were evaluated by using comprehensively available experimental data on heat capacity, elastic modulus, thermal expansivity, molar volume, etc., over wide temperature and pressure ranges. Reasonable agreements have been achieved in this work without inconsistency among various thermodynamic and thermophysical properties. Our calculated bulk modulus of fcc Al agrees well with the data reported by Kamm and Alers, Gerlich and Fisher, Ho and Ruoff and the assessment done by Wang and Reeber. However, it is impossible to reconcile the parameters to fit the recent data from Raju et al., as well as the results from Tallon and Wolfenden due to the intrinsic thermodynamic constraints.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10765-019-2503-7</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0195-928X |
ispartof | International journal of thermophysics, 2019-04, Vol.40 (4), p.1-15, Article 42 |
issn | 0195-928X 1572-9567 |
language | eng |
recordid | cdi_proquest_journals_2197408677 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bulk modulus Classical Mechanics Condensed Matter Physics Free electrons Geophysics Industrial Chemistry/Chemical Engineering Mathematical models Modulus of elasticity Molar volume Parameter identification Physical Chemistry Physics Physics and Astronomy Thermodynamics Thermophysical properties |
title | Reinvestigation of the Bulk Modulus for fcc Al using a Helmholtz Energy Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinvestigation%20of%20the%20Bulk%20Modulus%20for%20fcc%20Al%20using%20a%20Helmholtz%20Energy%20Approach&rft.jtitle=International%20journal%20of%20thermophysics&rft.au=Wu,%20Xue-Ting&rft.date=2019-04-01&rft.volume=40&rft.issue=4&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=42&rft.issn=0195-928X&rft.eissn=1572-9567&rft_id=info:doi/10.1007/s10765-019-2503-7&rft_dat=%3Cproquest_cross%3E2197408677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2197408677&rft_id=info:pmid/&rfr_iscdi=true |