Reinvestigation of the Bulk Modulus for fcc Al using a Helmholtz Energy Approach

While extensive studies on the bulk modulus of fcc Al have been conducted, there still exist controversies regarding to the experimental values. In the present work, we adopted a Helmholtz energy approach based on the Morse function, the free electron Fermi gas model, as well as a modified Debye–Grü...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of thermophysics 2019-04, Vol.40 (4), p.1-15, Article 42
Hauptverfasser: Wu, Xue-Ting, Xu, Zhi-Feng, Zhou, Xin-Ran, Wang, Hao, Lu, Xiao-Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 4
container_start_page 1
container_title International journal of thermophysics
container_volume 40
creator Wu, Xue-Ting
Xu, Zhi-Feng
Zhou, Xin-Ran
Wang, Hao
Lu, Xiao-Gang
description While extensive studies on the bulk modulus of fcc Al have been conducted, there still exist controversies regarding to the experimental values. In the present work, we adopted a Helmholtz energy approach based on the Morse function, the free electron Fermi gas model, as well as a modified Debye–Grüneisen model ensuring intrinsic thermodynamic relationship satisfied. To identify consistent bulk modulus data, all the model parameters for fcc Al were evaluated by using comprehensively available experimental data on heat capacity, elastic modulus, thermal expansivity, molar volume, etc., over wide temperature and pressure ranges. Reasonable agreements have been achieved in this work without inconsistency among various thermodynamic and thermophysical properties. Our calculated bulk modulus of fcc Al agrees well with the data reported by Kamm and Alers, Gerlich and Fisher, Ho and Ruoff and the assessment done by Wang and Reeber. However, it is impossible to reconcile the parameters to fit the recent data from Raju et al., as well as the results from Tallon and Wolfenden due to the intrinsic thermodynamic constraints.
doi_str_mv 10.1007/s10765-019-2503-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2197408677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2197408677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-40a2ea7988d2b7165fe155919722c33dc1009a12115396b12238822cce07dd593</originalsourceid><addsrcrecordid>eNp1kE1LwzAYx4MoOKcfwFvAczRPsjTNcY7phIkiCt5ClqZdZ9fMpBXmpzejgidPz-H_xvND6BLoNVAqbyJQmQlCQREmKCfyCI1ASEaUyOQxGiVBEMXy91N0FuOGUqqk4iP0_OLq9svFrq5MV_sW-xJ3a4dv--YDP_qib_qISx9waS2eNriPdVthgxeu2a59033jeetCtcfT3S54Y9fn6KQ0TXQXv3eM3u7mr7MFWT7dP8ymS2K54B2ZUMOckSrPC7aSkInSgRAKlGTMcl7Y9JUywAAEV9kKGON5niTrqCwKofgYXQ29afazTw_oje9DmyY1Sy0TmmdSJhcMLht8jMGVehfqrQl7DVQfwOkBnE589AGcPmTYkInJ21Yu_DX_H_oBg_Ruhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2197408677</pqid></control><display><type>article</type><title>Reinvestigation of the Bulk Modulus for fcc Al using a Helmholtz Energy Approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wu, Xue-Ting ; Xu, Zhi-Feng ; Zhou, Xin-Ran ; Wang, Hao ; Lu, Xiao-Gang</creator><creatorcontrib>Wu, Xue-Ting ; Xu, Zhi-Feng ; Zhou, Xin-Ran ; Wang, Hao ; Lu, Xiao-Gang</creatorcontrib><description>While extensive studies on the bulk modulus of fcc Al have been conducted, there still exist controversies regarding to the experimental values. In the present work, we adopted a Helmholtz energy approach based on the Morse function, the free electron Fermi gas model, as well as a modified Debye–Grüneisen model ensuring intrinsic thermodynamic relationship satisfied. To identify consistent bulk modulus data, all the model parameters for fcc Al were evaluated by using comprehensively available experimental data on heat capacity, elastic modulus, thermal expansivity, molar volume, etc., over wide temperature and pressure ranges. Reasonable agreements have been achieved in this work without inconsistency among various thermodynamic and thermophysical properties. Our calculated bulk modulus of fcc Al agrees well with the data reported by Kamm and Alers, Gerlich and Fisher, Ho and Ruoff and the assessment done by Wang and Reeber. However, it is impossible to reconcile the parameters to fit the recent data from Raju et al., as well as the results from Tallon and Wolfenden due to the intrinsic thermodynamic constraints.</description><identifier>ISSN: 0195-928X</identifier><identifier>EISSN: 1572-9567</identifier><identifier>DOI: 10.1007/s10765-019-2503-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bulk modulus ; Classical Mechanics ; Condensed Matter Physics ; Free electrons ; Geophysics ; Industrial Chemistry/Chemical Engineering ; Mathematical models ; Modulus of elasticity ; Molar volume ; Parameter identification ; Physical Chemistry ; Physics ; Physics and Astronomy ; Thermodynamics ; Thermophysical properties</subject><ispartof>International journal of thermophysics, 2019-04, Vol.40 (4), p.1-15, Article 42</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-40a2ea7988d2b7165fe155919722c33dc1009a12115396b12238822cce07dd593</citedby><cites>FETCH-LOGICAL-c353t-40a2ea7988d2b7165fe155919722c33dc1009a12115396b12238822cce07dd593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10765-019-2503-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10765-019-2503-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wu, Xue-Ting</creatorcontrib><creatorcontrib>Xu, Zhi-Feng</creatorcontrib><creatorcontrib>Zhou, Xin-Ran</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Lu, Xiao-Gang</creatorcontrib><title>Reinvestigation of the Bulk Modulus for fcc Al using a Helmholtz Energy Approach</title><title>International journal of thermophysics</title><addtitle>Int J Thermophys</addtitle><description>While extensive studies on the bulk modulus of fcc Al have been conducted, there still exist controversies regarding to the experimental values. In the present work, we adopted a Helmholtz energy approach based on the Morse function, the free electron Fermi gas model, as well as a modified Debye–Grüneisen model ensuring intrinsic thermodynamic relationship satisfied. To identify consistent bulk modulus data, all the model parameters for fcc Al were evaluated by using comprehensively available experimental data on heat capacity, elastic modulus, thermal expansivity, molar volume, etc., over wide temperature and pressure ranges. Reasonable agreements have been achieved in this work without inconsistency among various thermodynamic and thermophysical properties. Our calculated bulk modulus of fcc Al agrees well with the data reported by Kamm and Alers, Gerlich and Fisher, Ho and Ruoff and the assessment done by Wang and Reeber. However, it is impossible to reconcile the parameters to fit the recent data from Raju et al., as well as the results from Tallon and Wolfenden due to the intrinsic thermodynamic constraints.</description><subject>Bulk modulus</subject><subject>Classical Mechanics</subject><subject>Condensed Matter Physics</subject><subject>Free electrons</subject><subject>Geophysics</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Mathematical models</subject><subject>Modulus of elasticity</subject><subject>Molar volume</subject><subject>Parameter identification</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Thermodynamics</subject><subject>Thermophysical properties</subject><issn>0195-928X</issn><issn>1572-9567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LwzAYx4MoOKcfwFvAczRPsjTNcY7phIkiCt5ClqZdZ9fMpBXmpzejgidPz-H_xvND6BLoNVAqbyJQmQlCQREmKCfyCI1ASEaUyOQxGiVBEMXy91N0FuOGUqqk4iP0_OLq9svFrq5MV_sW-xJ3a4dv--YDP_qib_qISx9waS2eNriPdVthgxeu2a59033jeetCtcfT3S54Y9fn6KQ0TXQXv3eM3u7mr7MFWT7dP8ymS2K54B2ZUMOckSrPC7aSkInSgRAKlGTMcl7Y9JUywAAEV9kKGON5niTrqCwKofgYXQ29afazTw_oje9DmyY1Sy0TmmdSJhcMLht8jMGVehfqrQl7DVQfwOkBnE589AGcPmTYkInJ21Yu_DX_H_oBg_Ruhg</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Wu, Xue-Ting</creator><creator>Xu, Zhi-Feng</creator><creator>Zhou, Xin-Ran</creator><creator>Wang, Hao</creator><creator>Lu, Xiao-Gang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190401</creationdate><title>Reinvestigation of the Bulk Modulus for fcc Al using a Helmholtz Energy Approach</title><author>Wu, Xue-Ting ; Xu, Zhi-Feng ; Zhou, Xin-Ran ; Wang, Hao ; Lu, Xiao-Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-40a2ea7988d2b7165fe155919722c33dc1009a12115396b12238822cce07dd593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bulk modulus</topic><topic>Classical Mechanics</topic><topic>Condensed Matter Physics</topic><topic>Free electrons</topic><topic>Geophysics</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Mathematical models</topic><topic>Modulus of elasticity</topic><topic>Molar volume</topic><topic>Parameter identification</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Thermodynamics</topic><topic>Thermophysical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xue-Ting</creatorcontrib><creatorcontrib>Xu, Zhi-Feng</creatorcontrib><creatorcontrib>Zhou, Xin-Ran</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Lu, Xiao-Gang</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xue-Ting</au><au>Xu, Zhi-Feng</au><au>Zhou, Xin-Ran</au><au>Wang, Hao</au><au>Lu, Xiao-Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinvestigation of the Bulk Modulus for fcc Al using a Helmholtz Energy Approach</atitle><jtitle>International journal of thermophysics</jtitle><stitle>Int J Thermophys</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>40</volume><issue>4</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>42</artnum><issn>0195-928X</issn><eissn>1572-9567</eissn><abstract>While extensive studies on the bulk modulus of fcc Al have been conducted, there still exist controversies regarding to the experimental values. In the present work, we adopted a Helmholtz energy approach based on the Morse function, the free electron Fermi gas model, as well as a modified Debye–Grüneisen model ensuring intrinsic thermodynamic relationship satisfied. To identify consistent bulk modulus data, all the model parameters for fcc Al were evaluated by using comprehensively available experimental data on heat capacity, elastic modulus, thermal expansivity, molar volume, etc., over wide temperature and pressure ranges. Reasonable agreements have been achieved in this work without inconsistency among various thermodynamic and thermophysical properties. Our calculated bulk modulus of fcc Al agrees well with the data reported by Kamm and Alers, Gerlich and Fisher, Ho and Ruoff and the assessment done by Wang and Reeber. However, it is impossible to reconcile the parameters to fit the recent data from Raju et al., as well as the results from Tallon and Wolfenden due to the intrinsic thermodynamic constraints.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10765-019-2503-7</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0195-928X
ispartof International journal of thermophysics, 2019-04, Vol.40 (4), p.1-15, Article 42
issn 0195-928X
1572-9567
language eng
recordid cdi_proquest_journals_2197408677
source SpringerLink Journals - AutoHoldings
subjects Bulk modulus
Classical Mechanics
Condensed Matter Physics
Free electrons
Geophysics
Industrial Chemistry/Chemical Engineering
Mathematical models
Modulus of elasticity
Molar volume
Parameter identification
Physical Chemistry
Physics
Physics and Astronomy
Thermodynamics
Thermophysical properties
title Reinvestigation of the Bulk Modulus for fcc Al using a Helmholtz Energy Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinvestigation%20of%20the%20Bulk%20Modulus%20for%20fcc%20Al%20using%20a%20Helmholtz%20Energy%20Approach&rft.jtitle=International%20journal%20of%20thermophysics&rft.au=Wu,%20Xue-Ting&rft.date=2019-04-01&rft.volume=40&rft.issue=4&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=42&rft.issn=0195-928X&rft.eissn=1572-9567&rft_id=info:doi/10.1007/s10765-019-2503-7&rft_dat=%3Cproquest_cross%3E2197408677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2197408677&rft_id=info:pmid/&rfr_iscdi=true