Soils from intercropped fields have a higher capacity to suppress black root rot in cassava, caused by Scytalidium lignicola

The objective of the present study was to evaluate the natural suppressive capacity of soils from forest, and monocropping and intercropping systems, against root rot, caused by Scytalidium lignicola, in a greenhouse experiment. We used soils from a tropical dry forest (FOR) and two intercropping an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of phytopathology 2019-04, Vol.167 (4), p.209-217
Hauptverfasser: Medeiros, Erika Valente, Notaro, Krystal de Alcantara, de Barros, Jamilly Alves, Duda, Gustavo Pereira, Moraes, Marcele de Cássia Henriques dos Santos, Ambrósio, Márcia Michelle de Queiroz, Negreiros, Andreia Mitsa Paiva, Sales Júnior, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 217
container_issue 4
container_start_page 209
container_title Journal of phytopathology
container_volume 167
creator Medeiros, Erika Valente
Notaro, Krystal de Alcantara
de Barros, Jamilly Alves
Duda, Gustavo Pereira
Moraes, Marcele de Cássia Henriques dos Santos
Ambrósio, Márcia Michelle de Queiroz
Negreiros, Andreia Mitsa Paiva
Sales Júnior, Rui
description The objective of the present study was to evaluate the natural suppressive capacity of soils from forest, and monocropping and intercropping systems, against root rot, caused by Scytalidium lignicola, in a greenhouse experiment. We used soils from a tropical dry forest (FOR) and two intercropping and two monoculture systems. The first intercrop was maize and beans (CORNCOWP), and the second intercrop was cassava, pigeon peas and beans (CASPIGPCOWP). The first monoculture was beans, and the second was passion fruit. The intercropping soils showed a higher capacity to suppress black root rot in cassava than the monoculture because such soils were able to reduce disease severity by about 50%. Bean soil in the monoculture showed less microbial biomass carbon than in the intercrop, with means of 10.05 and 38.2 mg/kg, respectively. The higher density of bacteria and fungal populations, microbial biomass, urease and arylsulphatase activities correlated with a decrease in disease severity. Soils from the intercrops produced changes in soil quality, primarily in the population and density of microorganisms, enzymatic activities, total organic carbon and nutrients, reducing disease severity in cassava plants. These effects were validated by multivariate principal component analysis and showed three distinct groups: one FOR, one intercropping and one monocropping. The majority of vectors were in the direction of FOR and intercropping soils. We have provided some of the first data related to the beneficial effects of intercropping on the suppression of black root rot in cassava, which is validated through different attributes.
doi_str_mv 10.1111/jph.12788
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2197210596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2197210596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-262f928d174716d3fa8eaa927a21c274c803f2801bb75331cd37eebce658326e3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKcH_4OAJ8Fu-dE26VGGOmWgMD2HNE3XzGypSTsp-McbrVff4b13-Lzvgw8AlxjNcKz5tm1mmDDOj8AEp7RIUErTYzBBBcUJZjw7BWchbBEiiCI0AV9rZ2yAtXc7aPad9sq7ttUVrI22VYCNPGgoYWM2jfZQyVYq0w2wczD0bet1CLC0Ur1D71wXWxdTIhaCPMibuPQhZpUDXKuhk9ZUpt9BazZ7o5yV5-Ckljboi785BW_3d6-LZbJ6fnhc3K4SRQrGE5KTuiC8wixlOK9oLbmWsiBMEqwISxVHtCYc4bJkGaVYVZRpXSqdZ5ySXNMpuBpzW-8-eh06sXW938eXguCCEYyyIo_U9UhFBSF4XYvWm530g8BI_MgVUa74lRvZ-ch-GquH_0Hx9LIcL74BnmZ8ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2197210596</pqid></control><display><type>article</type><title>Soils from intercropped fields have a higher capacity to suppress black root rot in cassava, caused by Scytalidium lignicola</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Medeiros, Erika Valente ; Notaro, Krystal de Alcantara ; de Barros, Jamilly Alves ; Duda, Gustavo Pereira ; Moraes, Marcele de Cássia Henriques dos Santos ; Ambrósio, Márcia Michelle de Queiroz ; Negreiros, Andreia Mitsa Paiva ; Sales Júnior, Rui</creator><creatorcontrib>Medeiros, Erika Valente ; Notaro, Krystal de Alcantara ; de Barros, Jamilly Alves ; Duda, Gustavo Pereira ; Moraes, Marcele de Cássia Henriques dos Santos ; Ambrósio, Márcia Michelle de Queiroz ; Negreiros, Andreia Mitsa Paiva ; Sales Júnior, Rui</creatorcontrib><description>The objective of the present study was to evaluate the natural suppressive capacity of soils from forest, and monocropping and intercropping systems, against root rot, caused by Scytalidium lignicola, in a greenhouse experiment. We used soils from a tropical dry forest (FOR) and two intercropping and two monoculture systems. The first intercrop was maize and beans (CORNCOWP), and the second intercrop was cassava, pigeon peas and beans (CASPIGPCOWP). The first monoculture was beans, and the second was passion fruit. The intercropping soils showed a higher capacity to suppress black root rot in cassava than the monoculture because such soils were able to reduce disease severity by about 50%. Bean soil in the monoculture showed less microbial biomass carbon than in the intercrop, with means of 10.05 and 38.2 mg/kg, respectively. The higher density of bacteria and fungal populations, microbial biomass, urease and arylsulphatase activities correlated with a decrease in disease severity. Soils from the intercrops produced changes in soil quality, primarily in the population and density of microorganisms, enzymatic activities, total organic carbon and nutrients, reducing disease severity in cassava plants. These effects were validated by multivariate principal component analysis and showed three distinct groups: one FOR, one intercropping and one monocropping. The majority of vectors were in the direction of FOR and intercropping soils. We have provided some of the first data related to the beneficial effects of intercropping on the suppression of black root rot in cassava, which is validated through different attributes.</description><identifier>ISSN: 0931-1785</identifier><identifier>EISSN: 1439-0434</identifier><identifier>DOI: 10.1111/jph.12788</identifier><language>eng</language><publisher>Berlin: Wiley Subscription Services, Inc</publisher><subject>Agricultural practices ; Beans ; Biomass ; Black root ; Cassava ; Continuous cropping ; Corn ; disease supression ; Enzymatic activity ; extracellular soil enzyme ; Forests ; Intercropping ; Microorganisms ; Monoculture ; Nutrients ; Organic carbon ; Passion fruit ; Peas ; Pigeonpeas ; Plant diseases ; Population density ; Principal components analysis ; Root rot ; Soil contamination ; soil microbial biomass ; Soil properties ; Soil quality ; soil‐borne pathogens ; Total organic carbon ; Tropical forests ; Urease</subject><ispartof>Journal of phytopathology, 2019-04, Vol.167 (4), p.209-217</ispartof><rights>2019 Blackwell Verlag GmbH</rights><rights>Copyright © 2019 Blackwell Verlag GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-262f928d174716d3fa8eaa927a21c274c803f2801bb75331cd37eebce658326e3</citedby><cites>FETCH-LOGICAL-c2978-262f928d174716d3fa8eaa927a21c274c803f2801bb75331cd37eebce658326e3</cites><orcidid>0000-0002-5033-9745 ; 0000-0001-5543-9414 ; 0000-0001-6696-2454 ; 0000-0001-7325-4915 ; 0000-0002-9544-2527 ; 0000-0002-0998-4945 ; 0000-0001-9097-0649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjph.12788$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjph.12788$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Medeiros, Erika Valente</creatorcontrib><creatorcontrib>Notaro, Krystal de Alcantara</creatorcontrib><creatorcontrib>de Barros, Jamilly Alves</creatorcontrib><creatorcontrib>Duda, Gustavo Pereira</creatorcontrib><creatorcontrib>Moraes, Marcele de Cássia Henriques dos Santos</creatorcontrib><creatorcontrib>Ambrósio, Márcia Michelle de Queiroz</creatorcontrib><creatorcontrib>Negreiros, Andreia Mitsa Paiva</creatorcontrib><creatorcontrib>Sales Júnior, Rui</creatorcontrib><title>Soils from intercropped fields have a higher capacity to suppress black root rot in cassava, caused by Scytalidium lignicola</title><title>Journal of phytopathology</title><description>The objective of the present study was to evaluate the natural suppressive capacity of soils from forest, and monocropping and intercropping systems, against root rot, caused by Scytalidium lignicola, in a greenhouse experiment. We used soils from a tropical dry forest (FOR) and two intercropping and two monoculture systems. The first intercrop was maize and beans (CORNCOWP), and the second intercrop was cassava, pigeon peas and beans (CASPIGPCOWP). The first monoculture was beans, and the second was passion fruit. The intercropping soils showed a higher capacity to suppress black root rot in cassava than the monoculture because such soils were able to reduce disease severity by about 50%. Bean soil in the monoculture showed less microbial biomass carbon than in the intercrop, with means of 10.05 and 38.2 mg/kg, respectively. The higher density of bacteria and fungal populations, microbial biomass, urease and arylsulphatase activities correlated with a decrease in disease severity. Soils from the intercrops produced changes in soil quality, primarily in the population and density of microorganisms, enzymatic activities, total organic carbon and nutrients, reducing disease severity in cassava plants. These effects were validated by multivariate principal component analysis and showed three distinct groups: one FOR, one intercropping and one monocropping. The majority of vectors were in the direction of FOR and intercropping soils. We have provided some of the first data related to the beneficial effects of intercropping on the suppression of black root rot in cassava, which is validated through different attributes.</description><subject>Agricultural practices</subject><subject>Beans</subject><subject>Biomass</subject><subject>Black root</subject><subject>Cassava</subject><subject>Continuous cropping</subject><subject>Corn</subject><subject>disease supression</subject><subject>Enzymatic activity</subject><subject>extracellular soil enzyme</subject><subject>Forests</subject><subject>Intercropping</subject><subject>Microorganisms</subject><subject>Monoculture</subject><subject>Nutrients</subject><subject>Organic carbon</subject><subject>Passion fruit</subject><subject>Peas</subject><subject>Pigeonpeas</subject><subject>Plant diseases</subject><subject>Population density</subject><subject>Principal components analysis</subject><subject>Root rot</subject><subject>Soil contamination</subject><subject>soil microbial biomass</subject><subject>Soil properties</subject><subject>Soil quality</subject><subject>soil‐borne pathogens</subject><subject>Total organic carbon</subject><subject>Tropical forests</subject><subject>Urease</subject><issn>0931-1785</issn><issn>1439-0434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKcH_4OAJ8Fu-dE26VGGOmWgMD2HNE3XzGypSTsp-McbrVff4b13-Lzvgw8AlxjNcKz5tm1mmDDOj8AEp7RIUErTYzBBBcUJZjw7BWchbBEiiCI0AV9rZ2yAtXc7aPad9sq7ttUVrI22VYCNPGgoYWM2jfZQyVYq0w2wczD0bet1CLC0Ur1D71wXWxdTIhaCPMibuPQhZpUDXKuhk9ZUpt9BazZ7o5yV5-Ckljboi785BW_3d6-LZbJ6fnhc3K4SRQrGE5KTuiC8wixlOK9oLbmWsiBMEqwISxVHtCYc4bJkGaVYVZRpXSqdZ5ySXNMpuBpzW-8-eh06sXW938eXguCCEYyyIo_U9UhFBSF4XYvWm530g8BI_MgVUa74lRvZ-ch-GquH_0Hx9LIcL74BnmZ8ew</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Medeiros, Erika Valente</creator><creator>Notaro, Krystal de Alcantara</creator><creator>de Barros, Jamilly Alves</creator><creator>Duda, Gustavo Pereira</creator><creator>Moraes, Marcele de Cássia Henriques dos Santos</creator><creator>Ambrósio, Márcia Michelle de Queiroz</creator><creator>Negreiros, Andreia Mitsa Paiva</creator><creator>Sales Júnior, Rui</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-5033-9745</orcidid><orcidid>https://orcid.org/0000-0001-5543-9414</orcidid><orcidid>https://orcid.org/0000-0001-6696-2454</orcidid><orcidid>https://orcid.org/0000-0001-7325-4915</orcidid><orcidid>https://orcid.org/0000-0002-9544-2527</orcidid><orcidid>https://orcid.org/0000-0002-0998-4945</orcidid><orcidid>https://orcid.org/0000-0001-9097-0649</orcidid></search><sort><creationdate>201904</creationdate><title>Soils from intercropped fields have a higher capacity to suppress black root rot in cassava, caused by Scytalidium lignicola</title><author>Medeiros, Erika Valente ; Notaro, Krystal de Alcantara ; de Barros, Jamilly Alves ; Duda, Gustavo Pereira ; Moraes, Marcele de Cássia Henriques dos Santos ; Ambrósio, Márcia Michelle de Queiroz ; Negreiros, Andreia Mitsa Paiva ; Sales Júnior, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-262f928d174716d3fa8eaa927a21c274c803f2801bb75331cd37eebce658326e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agricultural practices</topic><topic>Beans</topic><topic>Biomass</topic><topic>Black root</topic><topic>Cassava</topic><topic>Continuous cropping</topic><topic>Corn</topic><topic>disease supression</topic><topic>Enzymatic activity</topic><topic>extracellular soil enzyme</topic><topic>Forests</topic><topic>Intercropping</topic><topic>Microorganisms</topic><topic>Monoculture</topic><topic>Nutrients</topic><topic>Organic carbon</topic><topic>Passion fruit</topic><topic>Peas</topic><topic>Pigeonpeas</topic><topic>Plant diseases</topic><topic>Population density</topic><topic>Principal components analysis</topic><topic>Root rot</topic><topic>Soil contamination</topic><topic>soil microbial biomass</topic><topic>Soil properties</topic><topic>Soil quality</topic><topic>soil‐borne pathogens</topic><topic>Total organic carbon</topic><topic>Tropical forests</topic><topic>Urease</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medeiros, Erika Valente</creatorcontrib><creatorcontrib>Notaro, Krystal de Alcantara</creatorcontrib><creatorcontrib>de Barros, Jamilly Alves</creatorcontrib><creatorcontrib>Duda, Gustavo Pereira</creatorcontrib><creatorcontrib>Moraes, Marcele de Cássia Henriques dos Santos</creatorcontrib><creatorcontrib>Ambrósio, Márcia Michelle de Queiroz</creatorcontrib><creatorcontrib>Negreiros, Andreia Mitsa Paiva</creatorcontrib><creatorcontrib>Sales Júnior, Rui</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of phytopathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medeiros, Erika Valente</au><au>Notaro, Krystal de Alcantara</au><au>de Barros, Jamilly Alves</au><au>Duda, Gustavo Pereira</au><au>Moraes, Marcele de Cássia Henriques dos Santos</au><au>Ambrósio, Márcia Michelle de Queiroz</au><au>Negreiros, Andreia Mitsa Paiva</au><au>Sales Júnior, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soils from intercropped fields have a higher capacity to suppress black root rot in cassava, caused by Scytalidium lignicola</atitle><jtitle>Journal of phytopathology</jtitle><date>2019-04</date><risdate>2019</risdate><volume>167</volume><issue>4</issue><spage>209</spage><epage>217</epage><pages>209-217</pages><issn>0931-1785</issn><eissn>1439-0434</eissn><abstract>The objective of the present study was to evaluate the natural suppressive capacity of soils from forest, and monocropping and intercropping systems, against root rot, caused by Scytalidium lignicola, in a greenhouse experiment. We used soils from a tropical dry forest (FOR) and two intercropping and two monoculture systems. The first intercrop was maize and beans (CORNCOWP), and the second intercrop was cassava, pigeon peas and beans (CASPIGPCOWP). The first monoculture was beans, and the second was passion fruit. The intercropping soils showed a higher capacity to suppress black root rot in cassava than the monoculture because such soils were able to reduce disease severity by about 50%. Bean soil in the monoculture showed less microbial biomass carbon than in the intercrop, with means of 10.05 and 38.2 mg/kg, respectively. The higher density of bacteria and fungal populations, microbial biomass, urease and arylsulphatase activities correlated with a decrease in disease severity. Soils from the intercrops produced changes in soil quality, primarily in the population and density of microorganisms, enzymatic activities, total organic carbon and nutrients, reducing disease severity in cassava plants. These effects were validated by multivariate principal component analysis and showed three distinct groups: one FOR, one intercropping and one monocropping. The majority of vectors were in the direction of FOR and intercropping soils. We have provided some of the first data related to the beneficial effects of intercropping on the suppression of black root rot in cassava, which is validated through different attributes.</abstract><cop>Berlin</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jph.12788</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5033-9745</orcidid><orcidid>https://orcid.org/0000-0001-5543-9414</orcidid><orcidid>https://orcid.org/0000-0001-6696-2454</orcidid><orcidid>https://orcid.org/0000-0001-7325-4915</orcidid><orcidid>https://orcid.org/0000-0002-9544-2527</orcidid><orcidid>https://orcid.org/0000-0002-0998-4945</orcidid><orcidid>https://orcid.org/0000-0001-9097-0649</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0931-1785
ispartof Journal of phytopathology, 2019-04, Vol.167 (4), p.209-217
issn 0931-1785
1439-0434
language eng
recordid cdi_proquest_journals_2197210596
source Wiley Online Library Journals Frontfile Complete
subjects Agricultural practices
Beans
Biomass
Black root
Cassava
Continuous cropping
Corn
disease supression
Enzymatic activity
extracellular soil enzyme
Forests
Intercropping
Microorganisms
Monoculture
Nutrients
Organic carbon
Passion fruit
Peas
Pigeonpeas
Plant diseases
Population density
Principal components analysis
Root rot
Soil contamination
soil microbial biomass
Soil properties
Soil quality
soil‐borne pathogens
Total organic carbon
Tropical forests
Urease
title Soils from intercropped fields have a higher capacity to suppress black root rot in cassava, caused by Scytalidium lignicola
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soils%20from%20intercropped%20fields%20have%20a%20higher%20capacity%20to%20suppress%20black%20root%20rot%20in%20cassava,%20caused%20by%20Scytalidium%20lignicola&rft.jtitle=Journal%20of%20phytopathology&rft.au=Medeiros,%20Erika%20Valente&rft.date=2019-04&rft.volume=167&rft.issue=4&rft.spage=209&rft.epage=217&rft.pages=209-217&rft.issn=0931-1785&rft.eissn=1439-0434&rft_id=info:doi/10.1111/jph.12788&rft_dat=%3Cproquest_cross%3E2197210596%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2197210596&rft_id=info:pmid/&rfr_iscdi=true