P Wave Teleseismic Traveltime Tomography of the North American Midcontinent

The remains of the 1.1‐Ga Midcontinent Rift (MCR) lie in the middle of the tectonically stable portion of North America. Previous and ongoing studies have imaged strong heterogeneity associated with the MCR in the crust but have not imaged such within the mantle. It is unclear whether this is due to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Solid earth 2019-02, Vol.124 (2), p.1725-1742
Hauptverfasser: Bollmann, Trevor A., Lee, Suzan, Frederiksen, Andrew W., Wolin, Emily, Revenaugh, Justin, Wiens, Douglas A., Darbyshire, Fiona A., Stein, Seth, Wysession, Michael E., Jurdy, Donna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1742
container_issue 2
container_start_page 1725
container_title Journal of geophysical research. Solid earth
container_volume 124
creator Bollmann, Trevor A.
Lee, Suzan
Frederiksen, Andrew W.
Wolin, Emily
Revenaugh, Justin
Wiens, Douglas A.
Darbyshire, Fiona A.
Stein, Seth
Wysession, Michael E.
Jurdy, Donna
description The remains of the 1.1‐Ga Midcontinent Rift (MCR) lie in the middle of the tectonically stable portion of North America. Previous and ongoing studies have imaged strong heterogeneity associated with the MCR in the crust but have not imaged such within the mantle. It is unclear whether this is due to the absence of rift‐related mantle structures or these studies had insufficient resolution to image them. To address this issue, we measured 46,374 teleseismic P wave delay times from seismograms recorded by the USArray Transportable Array, Superior Province Rifting EarthScope Experiment, and surrounding permanent stations. We included these and 54,866 delay times from prior studies in our tomographic inversion. We find that high‐velocity anomalies are widespread in our study area, but there are also prominent low‐velocity anomalies. Two of these are coincident with high‐Bouguer gravity anomalies associated with the MCR in Iowa and the Minnesota/Wisconsin border at 50‐ to 150‐km depth. Extensive resolution testing shows that these anomalies could be the result of downward vertical smearing of relatively low velocities from rift‐related material that “underplated" the crust, although we cannot exclude that the subcrustal mantle lithosphere beneath the MCR is anomalously enriched, hydrated, or warm. Other anomalies occur at syntaxes of the Penokean Orogen. One with the Superior Province and Marshfield Terrane in southern Minnesota and another with the Yavapai and Mazatzal Terranes, both at 100‐ to 250‐km depth. In the midmantle, we image two linear high‐velocity anomalies, interpreted as subducted fragments of the Farallon and Kula plates. Key Points Seismic delay times around the Midcontinent Rift are consistent with known anomalies directly below the crust The mantle beneath the Midcontinent Rift did not retain structures related to rifting during the Proterozoic Shallow low‐velocity anomalies at syntaxes of the Penokean orogen coincide with low electrical conductivity anomalies
doi_str_mv 10.1029/2018JB016627
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2196557882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2196557882</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3683-c00dc208120ab7e36c29143304f9e6a14b80dfaf89df77a0bd1d6ba658ecda023</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGp3_oCAW0fz6GQyy7Zoa60PpOIyZPKwKTOTmkyV_ntTKuLKuzmXw8e9hwPAOUZXGJHymiDM52OEGSPFEegRzMqspDk7_t0xPQWDGNcoDU8WHvbA_TN8k58GLk1tonGxcQouQ3LqzjXJ9o1_D3Kz2kFvYbcy8NGHbgVHjQlOyRY-OK1827nWtN0ZOLGyjmbwo33wenuznMyyxdP0bjJaZJIyTjOFkFYkJSBIVoWhTJEUhVI0tKVhEg8rjrSVlpfaFoVElcaaVZLl3CgtEaF9cHG4uwn-Y2tiJ9Z-G9r0UhBcsjwvON9TlwdKBR9jMFZsgmtk2AmMxL4x8bexhNMD_uVqs_uXFfPpyzinhFH6DZS3a8I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196557882</pqid></control><display><type>article</type><title>P Wave Teleseismic Traveltime Tomography of the North American Midcontinent</title><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Bollmann, Trevor A. ; Lee, Suzan ; Frederiksen, Andrew W. ; Wolin, Emily ; Revenaugh, Justin ; Wiens, Douglas A. ; Darbyshire, Fiona A. ; Stein, Seth ; Wysession, Michael E. ; Jurdy, Donna</creator><creatorcontrib>Bollmann, Trevor A. ; Lee, Suzan ; Frederiksen, Andrew W. ; Wolin, Emily ; Revenaugh, Justin ; Wiens, Douglas A. ; Darbyshire, Fiona A. ; Stein, Seth ; Wysession, Michael E. ; Jurdy, Donna</creatorcontrib><description>The remains of the 1.1‐Ga Midcontinent Rift (MCR) lie in the middle of the tectonically stable portion of North America. Previous and ongoing studies have imaged strong heterogeneity associated with the MCR in the crust but have not imaged such within the mantle. It is unclear whether this is due to the absence of rift‐related mantle structures or these studies had insufficient resolution to image them. To address this issue, we measured 46,374 teleseismic P wave delay times from seismograms recorded by the USArray Transportable Array, Superior Province Rifting EarthScope Experiment, and surrounding permanent stations. We included these and 54,866 delay times from prior studies in our tomographic inversion. We find that high‐velocity anomalies are widespread in our study area, but there are also prominent low‐velocity anomalies. Two of these are coincident with high‐Bouguer gravity anomalies associated with the MCR in Iowa and the Minnesota/Wisconsin border at 50‐ to 150‐km depth. Extensive resolution testing shows that these anomalies could be the result of downward vertical smearing of relatively low velocities from rift‐related material that “underplated" the crust, although we cannot exclude that the subcrustal mantle lithosphere beneath the MCR is anomalously enriched, hydrated, or warm. Other anomalies occur at syntaxes of the Penokean Orogen. One with the Superior Province and Marshfield Terrane in southern Minnesota and another with the Yavapai and Mazatzal Terranes, both at 100‐ to 250‐km depth. In the midmantle, we image two linear high‐velocity anomalies, interpreted as subducted fragments of the Farallon and Kula plates. Key Points Seismic delay times around the Midcontinent Rift are consistent with known anomalies directly below the crust The mantle beneath the Midcontinent Rift did not retain structures related to rifting during the Proterozoic Shallow low‐velocity anomalies at syntaxes of the Penokean orogen coincide with low electrical conductivity anomalies</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2018JB016627</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Anomalies ; body wave ; Delay time ; Elastic waves ; Galling ; Geophysics ; Gravity ; Gravity anomalies ; Heterogeneity ; Lithosphere ; Magma ; Mantle ; Midcontinent Rift ; North America ; Orogeny ; P waves ; Plate tectonics ; Resolution ; Rifting ; Seismograms ; Subduction (geology) ; Tomography ; Travel time ; VanDecar ; Velocity</subject><ispartof>Journal of geophysical research. Solid earth, 2019-02, Vol.124 (2), p.1725-1742</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3683-c00dc208120ab7e36c29143304f9e6a14b80dfaf89df77a0bd1d6ba658ecda023</citedby><cites>FETCH-LOGICAL-a3683-c00dc208120ab7e36c29143304f9e6a14b80dfaf89df77a0bd1d6ba658ecda023</cites><orcidid>0000-0003-1610-1191 ; 0000-0003-0522-7418 ; 0000-0002-7855-5159 ; 0000-0003-1884-1185 ; 0000-0001-6255-6299 ; 0000-0003-0967-7248 ; 0000-0002-5169-4386 ; 0000-0003-4711-3443 ; 0000-0001-6358-9789 ; 0000-0002-6938-6007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JB016627$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JB016627$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,27929,27930,45579,45580,46414,46838</link.rule.ids></links><search><creatorcontrib>Bollmann, Trevor A.</creatorcontrib><creatorcontrib>Lee, Suzan</creatorcontrib><creatorcontrib>Frederiksen, Andrew W.</creatorcontrib><creatorcontrib>Wolin, Emily</creatorcontrib><creatorcontrib>Revenaugh, Justin</creatorcontrib><creatorcontrib>Wiens, Douglas A.</creatorcontrib><creatorcontrib>Darbyshire, Fiona A.</creatorcontrib><creatorcontrib>Stein, Seth</creatorcontrib><creatorcontrib>Wysession, Michael E.</creatorcontrib><creatorcontrib>Jurdy, Donna</creatorcontrib><title>P Wave Teleseismic Traveltime Tomography of the North American Midcontinent</title><title>Journal of geophysical research. Solid earth</title><description>The remains of the 1.1‐Ga Midcontinent Rift (MCR) lie in the middle of the tectonically stable portion of North America. Previous and ongoing studies have imaged strong heterogeneity associated with the MCR in the crust but have not imaged such within the mantle. It is unclear whether this is due to the absence of rift‐related mantle structures or these studies had insufficient resolution to image them. To address this issue, we measured 46,374 teleseismic P wave delay times from seismograms recorded by the USArray Transportable Array, Superior Province Rifting EarthScope Experiment, and surrounding permanent stations. We included these and 54,866 delay times from prior studies in our tomographic inversion. We find that high‐velocity anomalies are widespread in our study area, but there are also prominent low‐velocity anomalies. Two of these are coincident with high‐Bouguer gravity anomalies associated with the MCR in Iowa and the Minnesota/Wisconsin border at 50‐ to 150‐km depth. Extensive resolution testing shows that these anomalies could be the result of downward vertical smearing of relatively low velocities from rift‐related material that “underplated" the crust, although we cannot exclude that the subcrustal mantle lithosphere beneath the MCR is anomalously enriched, hydrated, or warm. Other anomalies occur at syntaxes of the Penokean Orogen. One with the Superior Province and Marshfield Terrane in southern Minnesota and another with the Yavapai and Mazatzal Terranes, both at 100‐ to 250‐km depth. In the midmantle, we image two linear high‐velocity anomalies, interpreted as subducted fragments of the Farallon and Kula plates. Key Points Seismic delay times around the Midcontinent Rift are consistent with known anomalies directly below the crust The mantle beneath the Midcontinent Rift did not retain structures related to rifting during the Proterozoic Shallow low‐velocity anomalies at syntaxes of the Penokean orogen coincide with low electrical conductivity anomalies</description><subject>Anomalies</subject><subject>body wave</subject><subject>Delay time</subject><subject>Elastic waves</subject><subject>Galling</subject><subject>Geophysics</subject><subject>Gravity</subject><subject>Gravity anomalies</subject><subject>Heterogeneity</subject><subject>Lithosphere</subject><subject>Magma</subject><subject>Mantle</subject><subject>Midcontinent Rift</subject><subject>North America</subject><subject>Orogeny</subject><subject>P waves</subject><subject>Plate tectonics</subject><subject>Resolution</subject><subject>Rifting</subject><subject>Seismograms</subject><subject>Subduction (geology)</subject><subject>Tomography</subject><subject>Travel time</subject><subject>VanDecar</subject><subject>Velocity</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWGp3_oCAW0fz6GQyy7Zoa60PpOIyZPKwKTOTmkyV_ntTKuLKuzmXw8e9hwPAOUZXGJHymiDM52OEGSPFEegRzMqspDk7_t0xPQWDGNcoDU8WHvbA_TN8k58GLk1tonGxcQouQ3LqzjXJ9o1_D3Kz2kFvYbcy8NGHbgVHjQlOyRY-OK1827nWtN0ZOLGyjmbwo33wenuznMyyxdP0bjJaZJIyTjOFkFYkJSBIVoWhTJEUhVI0tKVhEg8rjrSVlpfaFoVElcaaVZLl3CgtEaF9cHG4uwn-Y2tiJ9Z-G9r0UhBcsjwvON9TlwdKBR9jMFZsgmtk2AmMxL4x8bexhNMD_uVqs_uXFfPpyzinhFH6DZS3a8I</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Bollmann, Trevor A.</creator><creator>Lee, Suzan</creator><creator>Frederiksen, Andrew W.</creator><creator>Wolin, Emily</creator><creator>Revenaugh, Justin</creator><creator>Wiens, Douglas A.</creator><creator>Darbyshire, Fiona A.</creator><creator>Stein, Seth</creator><creator>Wysession, Michael E.</creator><creator>Jurdy, Donna</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1610-1191</orcidid><orcidid>https://orcid.org/0000-0003-0522-7418</orcidid><orcidid>https://orcid.org/0000-0002-7855-5159</orcidid><orcidid>https://orcid.org/0000-0003-1884-1185</orcidid><orcidid>https://orcid.org/0000-0001-6255-6299</orcidid><orcidid>https://orcid.org/0000-0003-0967-7248</orcidid><orcidid>https://orcid.org/0000-0002-5169-4386</orcidid><orcidid>https://orcid.org/0000-0003-4711-3443</orcidid><orcidid>https://orcid.org/0000-0001-6358-9789</orcidid><orcidid>https://orcid.org/0000-0002-6938-6007</orcidid></search><sort><creationdate>201902</creationdate><title>P Wave Teleseismic Traveltime Tomography of the North American Midcontinent</title><author>Bollmann, Trevor A. ; Lee, Suzan ; Frederiksen, Andrew W. ; Wolin, Emily ; Revenaugh, Justin ; Wiens, Douglas A. ; Darbyshire, Fiona A. ; Stein, Seth ; Wysession, Michael E. ; Jurdy, Donna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3683-c00dc208120ab7e36c29143304f9e6a14b80dfaf89df77a0bd1d6ba658ecda023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anomalies</topic><topic>body wave</topic><topic>Delay time</topic><topic>Elastic waves</topic><topic>Galling</topic><topic>Geophysics</topic><topic>Gravity</topic><topic>Gravity anomalies</topic><topic>Heterogeneity</topic><topic>Lithosphere</topic><topic>Magma</topic><topic>Mantle</topic><topic>Midcontinent Rift</topic><topic>North America</topic><topic>Orogeny</topic><topic>P waves</topic><topic>Plate tectonics</topic><topic>Resolution</topic><topic>Rifting</topic><topic>Seismograms</topic><topic>Subduction (geology)</topic><topic>Tomography</topic><topic>Travel time</topic><topic>VanDecar</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bollmann, Trevor A.</creatorcontrib><creatorcontrib>Lee, Suzan</creatorcontrib><creatorcontrib>Frederiksen, Andrew W.</creatorcontrib><creatorcontrib>Wolin, Emily</creatorcontrib><creatorcontrib>Revenaugh, Justin</creatorcontrib><creatorcontrib>Wiens, Douglas A.</creatorcontrib><creatorcontrib>Darbyshire, Fiona A.</creatorcontrib><creatorcontrib>Stein, Seth</creatorcontrib><creatorcontrib>Wysession, Michael E.</creatorcontrib><creatorcontrib>Jurdy, Donna</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bollmann, Trevor A.</au><au>Lee, Suzan</au><au>Frederiksen, Andrew W.</au><au>Wolin, Emily</au><au>Revenaugh, Justin</au><au>Wiens, Douglas A.</au><au>Darbyshire, Fiona A.</au><au>Stein, Seth</au><au>Wysession, Michael E.</au><au>Jurdy, Donna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P Wave Teleseismic Traveltime Tomography of the North American Midcontinent</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2019-02</date><risdate>2019</risdate><volume>124</volume><issue>2</issue><spage>1725</spage><epage>1742</epage><pages>1725-1742</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>The remains of the 1.1‐Ga Midcontinent Rift (MCR) lie in the middle of the tectonically stable portion of North America. Previous and ongoing studies have imaged strong heterogeneity associated with the MCR in the crust but have not imaged such within the mantle. It is unclear whether this is due to the absence of rift‐related mantle structures or these studies had insufficient resolution to image them. To address this issue, we measured 46,374 teleseismic P wave delay times from seismograms recorded by the USArray Transportable Array, Superior Province Rifting EarthScope Experiment, and surrounding permanent stations. We included these and 54,866 delay times from prior studies in our tomographic inversion. We find that high‐velocity anomalies are widespread in our study area, but there are also prominent low‐velocity anomalies. Two of these are coincident with high‐Bouguer gravity anomalies associated with the MCR in Iowa and the Minnesota/Wisconsin border at 50‐ to 150‐km depth. Extensive resolution testing shows that these anomalies could be the result of downward vertical smearing of relatively low velocities from rift‐related material that “underplated" the crust, although we cannot exclude that the subcrustal mantle lithosphere beneath the MCR is anomalously enriched, hydrated, or warm. Other anomalies occur at syntaxes of the Penokean Orogen. One with the Superior Province and Marshfield Terrane in southern Minnesota and another with the Yavapai and Mazatzal Terranes, both at 100‐ to 250‐km depth. In the midmantle, we image two linear high‐velocity anomalies, interpreted as subducted fragments of the Farallon and Kula plates. Key Points Seismic delay times around the Midcontinent Rift are consistent with known anomalies directly below the crust The mantle beneath the Midcontinent Rift did not retain structures related to rifting during the Proterozoic Shallow low‐velocity anomalies at syntaxes of the Penokean orogen coincide with low electrical conductivity anomalies</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JB016627</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1610-1191</orcidid><orcidid>https://orcid.org/0000-0003-0522-7418</orcidid><orcidid>https://orcid.org/0000-0002-7855-5159</orcidid><orcidid>https://orcid.org/0000-0003-1884-1185</orcidid><orcidid>https://orcid.org/0000-0001-6255-6299</orcidid><orcidid>https://orcid.org/0000-0003-0967-7248</orcidid><orcidid>https://orcid.org/0000-0002-5169-4386</orcidid><orcidid>https://orcid.org/0000-0003-4711-3443</orcidid><orcidid>https://orcid.org/0000-0001-6358-9789</orcidid><orcidid>https://orcid.org/0000-0002-6938-6007</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9313
ispartof Journal of geophysical research. Solid earth, 2019-02, Vol.124 (2), p.1725-1742
issn 2169-9313
2169-9356
language eng
recordid cdi_proquest_journals_2196557882
source Access via Wiley Online Library; Wiley Online Library (Open Access Collection)
subjects Anomalies
body wave
Delay time
Elastic waves
Galling
Geophysics
Gravity
Gravity anomalies
Heterogeneity
Lithosphere
Magma
Mantle
Midcontinent Rift
North America
Orogeny
P waves
Plate tectonics
Resolution
Rifting
Seismograms
Subduction (geology)
Tomography
Travel time
VanDecar
Velocity
title P Wave Teleseismic Traveltime Tomography of the North American Midcontinent
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T03%3A06%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P%20Wave%20Teleseismic%20Traveltime%20Tomography%20of%20the%20North%20American%20Midcontinent&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Bollmann,%20Trevor%20A.&rft.date=2019-02&rft.volume=124&rft.issue=2&rft.spage=1725&rft.epage=1742&rft.pages=1725-1742&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2018JB016627&rft_dat=%3Cproquest_cross%3E2196557882%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2196557882&rft_id=info:pmid/&rfr_iscdi=true