An Analytic Method for Computing the Infinite Sums Occurring in the Geoelastic Disk Load Problem
The elastic displacements caused by a point load imposed on the surface of a layered, spherical, and self‐gravitating Earth can be expressed in terms of infinite series of Legendre polynomials or their derivatives, multiplied by constants, called Love numbers, that depend on the summation index or d...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Solid earth 2019-02, Vol.124 (2), p.2184-2201 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2201 |
---|---|
container_issue | 2 |
container_start_page | 2184 |
container_title | Journal of geophysical research. Solid earth |
container_volume | 124 |
creator | Fowler, J. Ogle, C. Bevis, M. |
description | The elastic displacements caused by a point load imposed on the surface of a layered, spherical, and self‐gravitating Earth can be expressed in terms of infinite series of Legendre polynomials or their derivatives, multiplied by constants, called Love numbers, that depend on the summation index or degree. Truncating these infinite series causes oscillatory errors in the computed displacement field, particularly in the near field of the load, but Farrell (1972, https://doi.org/10.1029/RG010i003p00761) circumvented this problem using a Kummer transformation that relied on an asymptotic approximation for the Love number spectrum and three useful identities for series of Legendre polynomials. Unfortunately, nobody has determined a similar work‐around for the disk load problem since in this case the infinite expansions consist of products of Legendre polynomials or their derivatives, and no similarly useful identities have been identified to date. We present an alternative means to the same general goal by replacing the infinite series with closed‐form expressions involving elliptic integrals.
Key Points
The displacement caused by a disk load can be computed via an infinite series
This infinite series can be simplified by relying on elliptic integrals |
doi_str_mv | 10.1029/2018JB016220 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2196557192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2196557192</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3301-6f5b4799a3a0d6279c213786eb40561add39f9f62c82c90ceb34227db52e036b3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEhX0xgNY4krAXsdOfGwLlFZFRfycg-M41CWJi50I9e1JKUKc2Muudj6NNIPQGSWXlIC8AkLT-ZhQAUAO0ACokJFkXBz-3pQdo2EIa9JP2r9oPECvowaPGlVtW6vxvWlXrsCl83ji6k3X2uYNtyuDZ01pG9sa_NTVAS-17rzfabb5lqfGmUqFncW1De944VSBH7zLK1OfoqNSVcEMf_YJerm9eZ7cRYvldDYZLSLFGKGRKHkeJ1IqpkghIJEaKEtSYfKYcEFVUTBZylKATkFLok3OYoCkyDkYwkTOTtD53nfj3UdnQputXef7ZCEDKgXnCZXQUxd7SnsXgjdltvG2Vn6bUZLtasz-1tjjbI9_2sps_2Wz-fRxzBn0LX8BAGVxpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196557192</pqid></control><display><type>article</type><title>An Analytic Method for Computing the Infinite Sums Occurring in the Geoelastic Disk Load Problem</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Fowler, J. ; Ogle, C. ; Bevis, M.</creator><creatorcontrib>Fowler, J. ; Ogle, C. ; Bevis, M.</creatorcontrib><description>The elastic displacements caused by a point load imposed on the surface of a layered, spherical, and self‐gravitating Earth can be expressed in terms of infinite series of Legendre polynomials or their derivatives, multiplied by constants, called Love numbers, that depend on the summation index or degree. Truncating these infinite series causes oscillatory errors in the computed displacement field, particularly in the near field of the load, but Farrell (1972, https://doi.org/10.1029/RG010i003p00761) circumvented this problem using a Kummer transformation that relied on an asymptotic approximation for the Love number spectrum and three useful identities for series of Legendre polynomials. Unfortunately, nobody has determined a similar work‐around for the disk load problem since in this case the infinite expansions consist of products of Legendre polynomials or their derivatives, and no similarly useful identities have been identified to date. We present an alternative means to the same general goal by replacing the infinite series with closed‐form expressions involving elliptic integrals.
Key Points
The displacement caused by a disk load can be computed via an infinite series
This infinite series can be simplified by relying on elliptic integrals</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2018JB016220</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Approximation ; Cattle ; Constants ; Derivatives ; disk load ; Earth ; elastic ; Elliptic functions ; elliptic integrals ; Fixed incomes ; Geophysics ; Infinite series ; Kummer transformation ; Love number ; Mathematical analysis ; Polynomials</subject><ispartof>Journal of geophysical research. Solid earth, 2019-02, Vol.124 (2), p.2184-2201</ispartof><rights>2019. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3301-6f5b4799a3a0d6279c213786eb40561add39f9f62c82c90ceb34227db52e036b3</citedby><cites>FETCH-LOGICAL-a3301-6f5b4799a3a0d6279c213786eb40561add39f9f62c82c90ceb34227db52e036b3</cites><orcidid>0000-0003-4776-1221 ; 0000-0003-0977-7708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JB016220$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JB016220$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Fowler, J.</creatorcontrib><creatorcontrib>Ogle, C.</creatorcontrib><creatorcontrib>Bevis, M.</creatorcontrib><title>An Analytic Method for Computing the Infinite Sums Occurring in the Geoelastic Disk Load Problem</title><title>Journal of geophysical research. Solid earth</title><description>The elastic displacements caused by a point load imposed on the surface of a layered, spherical, and self‐gravitating Earth can be expressed in terms of infinite series of Legendre polynomials or their derivatives, multiplied by constants, called Love numbers, that depend on the summation index or degree. Truncating these infinite series causes oscillatory errors in the computed displacement field, particularly in the near field of the load, but Farrell (1972, https://doi.org/10.1029/RG010i003p00761) circumvented this problem using a Kummer transformation that relied on an asymptotic approximation for the Love number spectrum and three useful identities for series of Legendre polynomials. Unfortunately, nobody has determined a similar work‐around for the disk load problem since in this case the infinite expansions consist of products of Legendre polynomials or their derivatives, and no similarly useful identities have been identified to date. We present an alternative means to the same general goal by replacing the infinite series with closed‐form expressions involving elliptic integrals.
Key Points
The displacement caused by a disk load can be computed via an infinite series
This infinite series can be simplified by relying on elliptic integrals</description><subject>Approximation</subject><subject>Cattle</subject><subject>Constants</subject><subject>Derivatives</subject><subject>disk load</subject><subject>Earth</subject><subject>elastic</subject><subject>Elliptic functions</subject><subject>elliptic integrals</subject><subject>Fixed incomes</subject><subject>Geophysics</subject><subject>Infinite series</subject><subject>Kummer transformation</subject><subject>Love number</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEhX0xgNY4krAXsdOfGwLlFZFRfycg-M41CWJi50I9e1JKUKc2Muudj6NNIPQGSWXlIC8AkLT-ZhQAUAO0ACokJFkXBz-3pQdo2EIa9JP2r9oPECvowaPGlVtW6vxvWlXrsCl83ji6k3X2uYNtyuDZ01pG9sa_NTVAS-17rzfabb5lqfGmUqFncW1De944VSBH7zLK1OfoqNSVcEMf_YJerm9eZ7cRYvldDYZLSLFGKGRKHkeJ1IqpkghIJEaKEtSYfKYcEFVUTBZylKATkFLok3OYoCkyDkYwkTOTtD53nfj3UdnQputXef7ZCEDKgXnCZXQUxd7SnsXgjdltvG2Vn6bUZLtasz-1tjjbI9_2sps_2Wz-fRxzBn0LX8BAGVxpA</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Fowler, J.</creator><creator>Ogle, C.</creator><creator>Bevis, M.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4776-1221</orcidid><orcidid>https://orcid.org/0000-0003-0977-7708</orcidid></search><sort><creationdate>201902</creationdate><title>An Analytic Method for Computing the Infinite Sums Occurring in the Geoelastic Disk Load Problem</title><author>Fowler, J. ; Ogle, C. ; Bevis, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3301-6f5b4799a3a0d6279c213786eb40561add39f9f62c82c90ceb34227db52e036b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Cattle</topic><topic>Constants</topic><topic>Derivatives</topic><topic>disk load</topic><topic>Earth</topic><topic>elastic</topic><topic>Elliptic functions</topic><topic>elliptic integrals</topic><topic>Fixed incomes</topic><topic>Geophysics</topic><topic>Infinite series</topic><topic>Kummer transformation</topic><topic>Love number</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fowler, J.</creatorcontrib><creatorcontrib>Ogle, C.</creatorcontrib><creatorcontrib>Bevis, M.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fowler, J.</au><au>Ogle, C.</au><au>Bevis, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Analytic Method for Computing the Infinite Sums Occurring in the Geoelastic Disk Load Problem</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2019-02</date><risdate>2019</risdate><volume>124</volume><issue>2</issue><spage>2184</spage><epage>2201</epage><pages>2184-2201</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>The elastic displacements caused by a point load imposed on the surface of a layered, spherical, and self‐gravitating Earth can be expressed in terms of infinite series of Legendre polynomials or their derivatives, multiplied by constants, called Love numbers, that depend on the summation index or degree. Truncating these infinite series causes oscillatory errors in the computed displacement field, particularly in the near field of the load, but Farrell (1972, https://doi.org/10.1029/RG010i003p00761) circumvented this problem using a Kummer transformation that relied on an asymptotic approximation for the Love number spectrum and three useful identities for series of Legendre polynomials. Unfortunately, nobody has determined a similar work‐around for the disk load problem since in this case the infinite expansions consist of products of Legendre polynomials or their derivatives, and no similarly useful identities have been identified to date. We present an alternative means to the same general goal by replacing the infinite series with closed‐form expressions involving elliptic integrals.
Key Points
The displacement caused by a disk load can be computed via an infinite series
This infinite series can be simplified by relying on elliptic integrals</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JB016220</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4776-1221</orcidid><orcidid>https://orcid.org/0000-0003-0977-7708</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9313 |
ispartof | Journal of geophysical research. Solid earth, 2019-02, Vol.124 (2), p.2184-2201 |
issn | 2169-9313 2169-9356 |
language | eng |
recordid | cdi_proquest_journals_2196557192 |
source | Wiley Online Library - AutoHoldings Journals; Wiley Online Library (Open Access Collection) |
subjects | Approximation Cattle Constants Derivatives disk load Earth elastic Elliptic functions elliptic integrals Fixed incomes Geophysics Infinite series Kummer transformation Love number Mathematical analysis Polynomials |
title | An Analytic Method for Computing the Infinite Sums Occurring in the Geoelastic Disk Load Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Analytic%20Method%20for%20Computing%20the%20Infinite%20Sums%20Occurring%20in%20the%20Geoelastic%20Disk%20Load%20Problem&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Fowler,%20J.&rft.date=2019-02&rft.volume=124&rft.issue=2&rft.spage=2184&rft.epage=2201&rft.pages=2184-2201&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1029/2018JB016220&rft_dat=%3Cproquest_cross%3E2196557192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2196557192&rft_id=info:pmid/&rfr_iscdi=true |