Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body
In this paper, we analyse a Vector Penalty Projection Scheme (see [1]) to treat the displacement of a moving body in incompressible viscous flows in the case where the interaction of the fluid on the body can be neglected. The presence of the obstacle inside the computational domain is treated with...
Gespeichert in:
Veröffentlicht in: | ESAIM. Mathematical modelling and numerical analysis 2018-07, Vol.52 (4), p.1417-1436 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1436 |
---|---|
container_issue | 4 |
container_start_page | 1417 |
container_title | ESAIM. Mathematical modelling and numerical analysis |
container_volume | 52 |
creator | Bruneau, Vincent Doradoux, Adrien Fabrie, Pierre |
description | In this paper, we analyse a Vector Penalty Projection Scheme (see [1]) to treat the displacement of a moving body in incompressible viscous flows in the case where the interaction of the fluid on the body can be neglected. The presence of the obstacle inside the computational domain is treated with a penalization method introducing a parameter η to enforce the velocity on the solid boundary. The incompressibility constraint is approached using a Vector Projection method which introduces a relaxation parameter ε. We show the stability of the scheme and that the pressure and velocity converge towards a limit when the relaxation parameter ε and the time step δt tend to zero with a proportionality constraint ε = λδt. Finally, when η goes to 0, we show that the problem admits a weak limit which is a weak solution of the Navier-Stokes equations with no-slip condition on the solid boundary. |
doi_str_mv | 10.1051/m2an/2017016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2196523460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2196523460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-b0fa315511ebae258621fcc4b543378537555cd4d139fe17ef801b557f1cf92b3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYje_AFNvLrS2W7342iIopHgwQ-8Nd0yhQV2i21Z5d-7BOJpkpknb955CLkGdgdMwKCOVTOIGWQM0hPSg7hgEc8TOCU9lqVJJHL-dU4uvF8yxoAlokfKoW1adHNsNFJrqKIt6mAd3WCj1mFHN84uu01lG-r1AmukpruGBdKJait09C3YFXqK31u1pzz9qcKC1ratmjkt7Wx3Sc6MWnu8Os4--Xh8eB8-RePX0fPwfhxpzosQlcwoDkIAYKkwFnkag9E6KUXCeZYLngkh9CyZAS8MQoYmZ1AKkRnQpohL3ic3h9yu8vcWfZBLu3XdF17GUKQi5knKOur2QGlnvXdo5MZVtXI7CUzuLcq9RXm02OHRAa98wN9_VrmVTLOukszZVIqXYjoZfeYy539byXS_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196523460</pqid></control><display><type>article</type><title>Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body</title><source>Alma/SFX Local Collection</source><creator>Bruneau, Vincent ; Doradoux, Adrien ; Fabrie, Pierre</creator><creatorcontrib>Bruneau, Vincent ; Doradoux, Adrien ; Fabrie, Pierre</creatorcontrib><description>In this paper, we analyse a Vector Penalty Projection Scheme (see [1]) to treat the displacement of a moving body in incompressible viscous flows in the case where the interaction of the fluid on the body can be neglected. The presence of the obstacle inside the computational domain is treated with a penalization method introducing a parameter η to enforce the velocity on the solid boundary. The incompressibility constraint is approached using a Vector Projection method which introduces a relaxation parameter ε. We show the stability of the scheme and that the pressure and velocity converge towards a limit when the relaxation parameter ε and the time step δt tend to zero with a proportionality constraint ε = λδt. Finally, when η goes to 0, we show that the problem admits a weak limit which is a weak solution of the Navier-Stokes equations with no-slip condition on the solid boundary.</description><identifier>ISSN: 0764-583X</identifier><identifier>EISSN: 1290-3841</identifier><identifier>DOI: 10.1051/m2an/2017016</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>35Qxx ; 65Mxx ; 65Nxx ; 74F10 ; 76D05 ; 76M25 ; Computational fluid dynamics ; Convergence ; Fluid flow ; Incompressibility ; Incompressible flow ; incompressible flows ; Mathematical analysis ; moving body ; Navier-Stokes equations ; Parameters ; Projection ; Vector Penalty-projection methods ; Viscosity</subject><ispartof>ESAIM. Mathematical modelling and numerical analysis, 2018-07, Vol.52 (4), p.1417-1436</ispartof><rights>2018. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-m2an.org/articles/m2an/abs/2018/04/m2an160070/m2an160070.html .</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-b0fa315511ebae258621fcc4b543378537555cd4d139fe17ef801b557f1cf92b3</citedby><cites>FETCH-LOGICAL-c339t-b0fa315511ebae258621fcc4b543378537555cd4d139fe17ef801b557f1cf92b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bruneau, Vincent</creatorcontrib><creatorcontrib>Doradoux, Adrien</creatorcontrib><creatorcontrib>Fabrie, Pierre</creatorcontrib><title>Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body</title><title>ESAIM. Mathematical modelling and numerical analysis</title><description>In this paper, we analyse a Vector Penalty Projection Scheme (see [1]) to treat the displacement of a moving body in incompressible viscous flows in the case where the interaction of the fluid on the body can be neglected. The presence of the obstacle inside the computational domain is treated with a penalization method introducing a parameter η to enforce the velocity on the solid boundary. The incompressibility constraint is approached using a Vector Projection method which introduces a relaxation parameter ε. We show the stability of the scheme and that the pressure and velocity converge towards a limit when the relaxation parameter ε and the time step δt tend to zero with a proportionality constraint ε = λδt. Finally, when η goes to 0, we show that the problem admits a weak limit which is a weak solution of the Navier-Stokes equations with no-slip condition on the solid boundary.</description><subject>35Qxx</subject><subject>65Mxx</subject><subject>65Nxx</subject><subject>74F10</subject><subject>76D05</subject><subject>76M25</subject><subject>Computational fluid dynamics</subject><subject>Convergence</subject><subject>Fluid flow</subject><subject>Incompressibility</subject><subject>Incompressible flow</subject><subject>incompressible flows</subject><subject>Mathematical analysis</subject><subject>moving body</subject><subject>Navier-Stokes equations</subject><subject>Parameters</subject><subject>Projection</subject><subject>Vector Penalty-projection methods</subject><subject>Viscosity</subject><issn>0764-583X</issn><issn>1290-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEQhhujiYje_AFNvLrS2W7342iIopHgwQ-8Nd0yhQV2i21Z5d-7BOJpkpknb955CLkGdgdMwKCOVTOIGWQM0hPSg7hgEc8TOCU9lqVJJHL-dU4uvF8yxoAlokfKoW1adHNsNFJrqKIt6mAd3WCj1mFHN84uu01lG-r1AmukpruGBdKJait09C3YFXqK31u1pzz9qcKC1ratmjkt7Wx3Sc6MWnu8Os4--Xh8eB8-RePX0fPwfhxpzosQlcwoDkIAYKkwFnkag9E6KUXCeZYLngkh9CyZAS8MQoYmZ1AKkRnQpohL3ic3h9yu8vcWfZBLu3XdF17GUKQi5knKOur2QGlnvXdo5MZVtXI7CUzuLcq9RXm02OHRAa98wN9_VrmVTLOukszZVIqXYjoZfeYy539byXS_</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Bruneau, Vincent</creator><creator>Doradoux, Adrien</creator><creator>Fabrie, Pierre</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180701</creationdate><title>Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body</title><author>Bruneau, Vincent ; Doradoux, Adrien ; Fabrie, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-b0fa315511ebae258621fcc4b543378537555cd4d139fe17ef801b557f1cf92b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>35Qxx</topic><topic>65Mxx</topic><topic>65Nxx</topic><topic>74F10</topic><topic>76D05</topic><topic>76M25</topic><topic>Computational fluid dynamics</topic><topic>Convergence</topic><topic>Fluid flow</topic><topic>Incompressibility</topic><topic>Incompressible flow</topic><topic>incompressible flows</topic><topic>Mathematical analysis</topic><topic>moving body</topic><topic>Navier-Stokes equations</topic><topic>Parameters</topic><topic>Projection</topic><topic>Vector Penalty-projection methods</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruneau, Vincent</creatorcontrib><creatorcontrib>Doradoux, Adrien</creatorcontrib><creatorcontrib>Fabrie, Pierre</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruneau, Vincent</au><au>Doradoux, Adrien</au><au>Fabrie, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body</atitle><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle><date>2018-07-01</date><risdate>2018</risdate><volume>52</volume><issue>4</issue><spage>1417</spage><epage>1436</epage><pages>1417-1436</pages><issn>0764-583X</issn><eissn>1290-3841</eissn><abstract>In this paper, we analyse a Vector Penalty Projection Scheme (see [1]) to treat the displacement of a moving body in incompressible viscous flows in the case where the interaction of the fluid on the body can be neglected. The presence of the obstacle inside the computational domain is treated with a penalization method introducing a parameter η to enforce the velocity on the solid boundary. The incompressibility constraint is approached using a Vector Projection method which introduces a relaxation parameter ε. We show the stability of the scheme and that the pressure and velocity converge towards a limit when the relaxation parameter ε and the time step δt tend to zero with a proportionality constraint ε = λδt. Finally, when η goes to 0, we show that the problem admits a weak limit which is a weak solution of the Navier-Stokes equations with no-slip condition on the solid boundary.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/m2an/2017016</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0764-583X |
ispartof | ESAIM. Mathematical modelling and numerical analysis, 2018-07, Vol.52 (4), p.1417-1436 |
issn | 0764-583X 1290-3841 |
language | eng |
recordid | cdi_proquest_journals_2196523460 |
source | Alma/SFX Local Collection |
subjects | 35Qxx 65Mxx 65Nxx 74F10 76D05 76M25 Computational fluid dynamics Convergence Fluid flow Incompressibility Incompressible flow incompressible flows Mathematical analysis moving body Navier-Stokes equations Parameters Projection Vector Penalty-projection methods Viscosity |
title | Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20a%20vector%20penalty%20projection%20scheme%20for%20the%20Navier%20Stokes%20equations%20with%20moving%20body&rft.jtitle=ESAIM.%20Mathematical%20modelling%20and%20numerical%20analysis&rft.au=Bruneau,%20Vincent&rft.date=2018-07-01&rft.volume=52&rft.issue=4&rft.spage=1417&rft.epage=1436&rft.pages=1417-1436&rft.issn=0764-583X&rft.eissn=1290-3841&rft_id=info:doi/10.1051/m2an/2017016&rft_dat=%3Cproquest_cross%3E2196523460%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2196523460&rft_id=info:pmid/&rfr_iscdi=true |