Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body

In this paper, we analyse a Vector Penalty Projection Scheme (see [1]) to treat the displacement of a moving body in incompressible viscous flows in the case where the interaction of the fluid on the body can be neglected. The presence of the obstacle inside the computational domain is treated with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Mathematical modelling and numerical analysis 2018-07, Vol.52 (4), p.1417-1436
Hauptverfasser: Bruneau, Vincent, Doradoux, Adrien, Fabrie, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1436
container_issue 4
container_start_page 1417
container_title ESAIM. Mathematical modelling and numerical analysis
container_volume 52
creator Bruneau, Vincent
Doradoux, Adrien
Fabrie, Pierre
description In this paper, we analyse a Vector Penalty Projection Scheme (see [1]) to treat the displacement of a moving body in incompressible viscous flows in the case where the interaction of the fluid on the body can be neglected. The presence of the obstacle inside the computational domain is treated with a penalization method introducing a parameter η to enforce the velocity on the solid boundary. The incompressibility constraint is approached using a Vector Projection method which introduces a relaxation parameter ε. We show the stability of the scheme and that the pressure and velocity converge towards a limit when the relaxation parameter ε and the time step δt tend to zero with a proportionality constraint ε = λδt. Finally, when η goes to 0, we show that the problem admits a weak limit which is a weak solution of the Navier-Stokes equations with no-slip condition on the solid boundary.
doi_str_mv 10.1051/m2an/2017016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2196523460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2196523460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-b0fa315511ebae258621fcc4b543378537555cd4d139fe17ef801b557f1cf92b3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYje_AFNvLrS2W7342iIopHgwQ-8Nd0yhQV2i21Z5d-7BOJpkpknb955CLkGdgdMwKCOVTOIGWQM0hPSg7hgEc8TOCU9lqVJJHL-dU4uvF8yxoAlokfKoW1adHNsNFJrqKIt6mAd3WCj1mFHN84uu01lG-r1AmukpruGBdKJait09C3YFXqK31u1pzz9qcKC1ratmjkt7Wx3Sc6MWnu8Os4--Xh8eB8-RePX0fPwfhxpzosQlcwoDkIAYKkwFnkag9E6KUXCeZYLngkh9CyZAS8MQoYmZ1AKkRnQpohL3ic3h9yu8vcWfZBLu3XdF17GUKQi5knKOur2QGlnvXdo5MZVtXI7CUzuLcq9RXm02OHRAa98wN9_VrmVTLOukszZVIqXYjoZfeYy539byXS_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196523460</pqid></control><display><type>article</type><title>Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body</title><source>Alma/SFX Local Collection</source><creator>Bruneau, Vincent ; Doradoux, Adrien ; Fabrie, Pierre</creator><creatorcontrib>Bruneau, Vincent ; Doradoux, Adrien ; Fabrie, Pierre</creatorcontrib><description>In this paper, we analyse a Vector Penalty Projection Scheme (see [1]) to treat the displacement of a moving body in incompressible viscous flows in the case where the interaction of the fluid on the body can be neglected. The presence of the obstacle inside the computational domain is treated with a penalization method introducing a parameter η to enforce the velocity on the solid boundary. The incompressibility constraint is approached using a Vector Projection method which introduces a relaxation parameter ε. We show the stability of the scheme and that the pressure and velocity converge towards a limit when the relaxation parameter ε and the time step δt tend to zero with a proportionality constraint ε = λδt. Finally, when η goes to 0, we show that the problem admits a weak limit which is a weak solution of the Navier-Stokes equations with no-slip condition on the solid boundary.</description><identifier>ISSN: 0764-583X</identifier><identifier>EISSN: 1290-3841</identifier><identifier>DOI: 10.1051/m2an/2017016</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>35Qxx ; 65Mxx ; 65Nxx ; 74F10 ; 76D05 ; 76M25 ; Computational fluid dynamics ; Convergence ; Fluid flow ; Incompressibility ; Incompressible flow ; incompressible flows ; Mathematical analysis ; moving body ; Navier-Stokes equations ; Parameters ; Projection ; Vector Penalty-projection methods ; Viscosity</subject><ispartof>ESAIM. Mathematical modelling and numerical analysis, 2018-07, Vol.52 (4), p.1417-1436</ispartof><rights>2018. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-m2an.org/articles/m2an/abs/2018/04/m2an160070/m2an160070.html .</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-b0fa315511ebae258621fcc4b543378537555cd4d139fe17ef801b557f1cf92b3</citedby><cites>FETCH-LOGICAL-c339t-b0fa315511ebae258621fcc4b543378537555cd4d139fe17ef801b557f1cf92b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bruneau, Vincent</creatorcontrib><creatorcontrib>Doradoux, Adrien</creatorcontrib><creatorcontrib>Fabrie, Pierre</creatorcontrib><title>Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body</title><title>ESAIM. Mathematical modelling and numerical analysis</title><description>In this paper, we analyse a Vector Penalty Projection Scheme (see [1]) to treat the displacement of a moving body in incompressible viscous flows in the case where the interaction of the fluid on the body can be neglected. The presence of the obstacle inside the computational domain is treated with a penalization method introducing a parameter η to enforce the velocity on the solid boundary. The incompressibility constraint is approached using a Vector Projection method which introduces a relaxation parameter ε. We show the stability of the scheme and that the pressure and velocity converge towards a limit when the relaxation parameter ε and the time step δt tend to zero with a proportionality constraint ε = λδt. Finally, when η goes to 0, we show that the problem admits a weak limit which is a weak solution of the Navier-Stokes equations with no-slip condition on the solid boundary.</description><subject>35Qxx</subject><subject>65Mxx</subject><subject>65Nxx</subject><subject>74F10</subject><subject>76D05</subject><subject>76M25</subject><subject>Computational fluid dynamics</subject><subject>Convergence</subject><subject>Fluid flow</subject><subject>Incompressibility</subject><subject>Incompressible flow</subject><subject>incompressible flows</subject><subject>Mathematical analysis</subject><subject>moving body</subject><subject>Navier-Stokes equations</subject><subject>Parameters</subject><subject>Projection</subject><subject>Vector Penalty-projection methods</subject><subject>Viscosity</subject><issn>0764-583X</issn><issn>1290-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEQhhujiYje_AFNvLrS2W7342iIopHgwQ-8Nd0yhQV2i21Z5d-7BOJpkpknb955CLkGdgdMwKCOVTOIGWQM0hPSg7hgEc8TOCU9lqVJJHL-dU4uvF8yxoAlokfKoW1adHNsNFJrqKIt6mAd3WCj1mFHN84uu01lG-r1AmukpruGBdKJait09C3YFXqK31u1pzz9qcKC1ratmjkt7Wx3Sc6MWnu8Os4--Xh8eB8-RePX0fPwfhxpzosQlcwoDkIAYKkwFnkag9E6KUXCeZYLngkh9CyZAS8MQoYmZ1AKkRnQpohL3ic3h9yu8vcWfZBLu3XdF17GUKQi5knKOur2QGlnvXdo5MZVtXI7CUzuLcq9RXm02OHRAa98wN9_VrmVTLOukszZVIqXYjoZfeYy539byXS_</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Bruneau, Vincent</creator><creator>Doradoux, Adrien</creator><creator>Fabrie, Pierre</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180701</creationdate><title>Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body</title><author>Bruneau, Vincent ; Doradoux, Adrien ; Fabrie, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-b0fa315511ebae258621fcc4b543378537555cd4d139fe17ef801b557f1cf92b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>35Qxx</topic><topic>65Mxx</topic><topic>65Nxx</topic><topic>74F10</topic><topic>76D05</topic><topic>76M25</topic><topic>Computational fluid dynamics</topic><topic>Convergence</topic><topic>Fluid flow</topic><topic>Incompressibility</topic><topic>Incompressible flow</topic><topic>incompressible flows</topic><topic>Mathematical analysis</topic><topic>moving body</topic><topic>Navier-Stokes equations</topic><topic>Parameters</topic><topic>Projection</topic><topic>Vector Penalty-projection methods</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruneau, Vincent</creatorcontrib><creatorcontrib>Doradoux, Adrien</creatorcontrib><creatorcontrib>Fabrie, Pierre</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruneau, Vincent</au><au>Doradoux, Adrien</au><au>Fabrie, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body</atitle><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle><date>2018-07-01</date><risdate>2018</risdate><volume>52</volume><issue>4</issue><spage>1417</spage><epage>1436</epage><pages>1417-1436</pages><issn>0764-583X</issn><eissn>1290-3841</eissn><abstract>In this paper, we analyse a Vector Penalty Projection Scheme (see [1]) to treat the displacement of a moving body in incompressible viscous flows in the case where the interaction of the fluid on the body can be neglected. The presence of the obstacle inside the computational domain is treated with a penalization method introducing a parameter η to enforce the velocity on the solid boundary. The incompressibility constraint is approached using a Vector Projection method which introduces a relaxation parameter ε. We show the stability of the scheme and that the pressure and velocity converge towards a limit when the relaxation parameter ε and the time step δt tend to zero with a proportionality constraint ε = λδt. Finally, when η goes to 0, we show that the problem admits a weak limit which is a weak solution of the Navier-Stokes equations with no-slip condition on the solid boundary.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/m2an/2017016</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0764-583X
ispartof ESAIM. Mathematical modelling and numerical analysis, 2018-07, Vol.52 (4), p.1417-1436
issn 0764-583X
1290-3841
language eng
recordid cdi_proquest_journals_2196523460
source Alma/SFX Local Collection
subjects 35Qxx
65Mxx
65Nxx
74F10
76D05
76M25
Computational fluid dynamics
Convergence
Fluid flow
Incompressibility
Incompressible flow
incompressible flows
Mathematical analysis
moving body
Navier-Stokes equations
Parameters
Projection
Vector Penalty-projection methods
Viscosity
title Convergence of a vector penalty projection scheme for the Navier Stokes equations with moving body
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20a%20vector%20penalty%20projection%20scheme%20for%20the%20Navier%20Stokes%20equations%20with%20moving%20body&rft.jtitle=ESAIM.%20Mathematical%20modelling%20and%20numerical%20analysis&rft.au=Bruneau,%20Vincent&rft.date=2018-07-01&rft.volume=52&rft.issue=4&rft.spage=1417&rft.epage=1436&rft.pages=1417-1436&rft.issn=0764-583X&rft.eissn=1290-3841&rft_id=info:doi/10.1051/m2an/2017016&rft_dat=%3Cproquest_cross%3E2196523460%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2196523460&rft_id=info:pmid/&rfr_iscdi=true