Determinants and characteristic polynomials of Lie algebras
For an s-tuple A=(A1,…,As) of square matrices of the same size, the (joint) determinant of A and the characteristic polynomial of A are defined bydet(A)(z)=det(z1A1+z2A2+⋯+zsAs) andpA(z)=det(z0I+z1A1+z2A2+⋯+zsAs), respectively. This paper calculates determinant of the finite dimensional irreducib...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2019-02, Vol.563, p.426-439 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For an s-tuple A=(A1,…,As) of square matrices of the same size, the (joint) determinant of A and the characteristic polynomial of A are defined bydet(A)(z)=det(z1A1+z2A2+⋯+zsAs) andpA(z)=det(z0I+z1A1+z2A2+⋯+zsAs), respectively. This paper calculates determinant of the finite dimensional irreducible representations of sl(2,F), which is either zero or a product of some irreducible quadratic polynomials. Moreover, it shows that a finite dimensional Lie algebra is solvable if and only if the characteristic polynomial is completely reducible. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2018.11.015 |