Determinants and characteristic polynomials of Lie algebras

For an s-tuple A=(A1,…,As) of square matrices of the same size, the (joint) determinant of A and the characteristic polynomial of A are defined bydet⁡(A)(z)=det⁡(z1A1+z2A2+⋯+zsAs) andpA(z)=det⁡(z0I+z1A1+z2A2+⋯+zsAs), respectively. This paper calculates determinant of the finite dimensional irreducib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2019-02, Vol.563, p.426-439
Hauptverfasser: Hu, Zhiguang, Zhang, Philip B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For an s-tuple A=(A1,…,As) of square matrices of the same size, the (joint) determinant of A and the characteristic polynomial of A are defined bydet⁡(A)(z)=det⁡(z1A1+z2A2+⋯+zsAs) andpA(z)=det⁡(z0I+z1A1+z2A2+⋯+zsAs), respectively. This paper calculates determinant of the finite dimensional irreducible representations of sl(2,F), which is either zero or a product of some irreducible quadratic polynomials. Moreover, it shows that a finite dimensional Lie algebra is solvable if and only if the characteristic polynomial is completely reducible.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2018.11.015