Quantum‐resistant authentication algorithms for satellite‐based augmentation systems

Cryptography in the form of digital signatures can be part of the solution to the threat of spoofing and is going to be implemented on Galileo and other Global Navigation Satellite Systems. Digital signatures incorporated into the data stream authenticate the integrity of the data as well as the ori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Navigation (Washington) 2019, Vol.66 (1), p.199-209
Hauptverfasser: Neish, Andrew, Walter, Todd, Enge, Per
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 209
container_issue 1
container_start_page 199
container_title Navigation (Washington)
container_volume 66
creator Neish, Andrew
Walter, Todd
Enge, Per
description Cryptography in the form of digital signatures can be part of the solution to the threat of spoofing and is going to be implemented on Galileo and other Global Navigation Satellite Systems. Digital signatures incorporated into the data stream authenticate the integrity of the data as well as the origin of the message. Implementing a digital signature on a satellite‐based augmentation system for use in aviation will require the signature to be short and the signing procedure to be cryptographically relevant for the next 30 or more years. With the advent of quantum computing, many state‐of‐the‐art authentication schemes are no longer viable, so an authentication scheme implemented in satellite‐based augmentation system will need to be quantum secure. This paper introduces the cryptographic primitives (foundational problems) necessary to understand the vulnerabilities in modern‐day cryptography due to quantum computing and investigates the use of TESLA (Timed Efficient Stream Loss‐tolerant Algorithm) and EC‐Schnorr (Elliptic Curve‐Schnorr) algorithms in broadcast systems.
doi_str_mv 10.1002/navi.287
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2196369570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2196369570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-28d0474728e5722077eab9c974b529b7fdb383e43e96a4177026faf0985fd2633</originalsourceid><addsrcrecordid>eNp10M1KAzEQB_AgCtYq-AgLXrxsTSa7yeZYxI9CUQQVbyG7m7Qp-1GTrNKbj-Az-iSmrFdPwzC_mYE_QucEzwjGcNWpDzuDgh-gCRBG0gwEO0STOCpSkgMcoxPvNxhTknE2QW9Pg-rC0P58fTvtrQ-xS9QQ1roLtlLB9l2imlXvbFi3PjG9S7wKumls0HGnVF7X0a_a6Eftdz7o1p-iI6Mar8_-6hS93N48X9-ny8e7xfV8mVYgKE-hqHHGMw6FzjkA5lyrUlSCZ2UOouSmLmlBdUa1YCojnGNgRhksitzUwCidoovx7tb174P2QW76wXXxpQQiGGUi5ziqy1FVrvfeaSO3zrbK7STBcp-b3OcmY26RpiP9tI3e_evkw_x1sfe_wvByTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196369570</pqid></control><display><type>article</type><title>Quantum‐resistant authentication algorithms for satellite‐based augmentation systems</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Neish, Andrew ; Walter, Todd ; Enge, Per</creator><creatorcontrib>Neish, Andrew ; Walter, Todd ; Enge, Per</creatorcontrib><description>Cryptography in the form of digital signatures can be part of the solution to the threat of spoofing and is going to be implemented on Galileo and other Global Navigation Satellite Systems. Digital signatures incorporated into the data stream authenticate the integrity of the data as well as the origin of the message. Implementing a digital signature on a satellite‐based augmentation system for use in aviation will require the signature to be short and the signing procedure to be cryptographically relevant for the next 30 or more years. With the advent of quantum computing, many state‐of‐the‐art authentication schemes are no longer viable, so an authentication scheme implemented in satellite‐based augmentation system will need to be quantum secure. This paper introduces the cryptographic primitives (foundational problems) necessary to understand the vulnerabilities in modern‐day cryptography due to quantum computing and investigates the use of TESLA (Timed Efficient Stream Loss‐tolerant Algorithm) and EC‐Schnorr (Elliptic Curve‐Schnorr) algorithms in broadcast systems.</description><identifier>ISSN: 0028-1522</identifier><identifier>EISSN: 2161-4296</identifier><identifier>DOI: 10.1002/navi.287</identifier><language>eng</language><publisher>Manassas: The Institute of Navigation</publisher><subject>Algorithms ; Computation ; Cryptography ; Curves ; Data transmission ; Digital signatures ; Navigation ; Navigation satellites ; Quantum computing ; Rivers ; Satellite based augmentation systems ; Satellites ; Spoofing</subject><ispartof>Navigation (Washington), 2019, Vol.66 (1), p.199-209</ispartof><rights>2019 Institute of Navigation</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-28d0474728e5722077eab9c974b529b7fdb383e43e96a4177026faf0985fd2633</citedby><cites>FETCH-LOGICAL-c2937-28d0474728e5722077eab9c974b529b7fdb383e43e96a4177026faf0985fd2633</cites><orcidid>0000-0002-3257-3175 ; 0000-0001-9135-8363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnavi.287$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnavi.287$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Neish, Andrew</creatorcontrib><creatorcontrib>Walter, Todd</creatorcontrib><creatorcontrib>Enge, Per</creatorcontrib><title>Quantum‐resistant authentication algorithms for satellite‐based augmentation systems</title><title>Navigation (Washington)</title><description>Cryptography in the form of digital signatures can be part of the solution to the threat of spoofing and is going to be implemented on Galileo and other Global Navigation Satellite Systems. Digital signatures incorporated into the data stream authenticate the integrity of the data as well as the origin of the message. Implementing a digital signature on a satellite‐based augmentation system for use in aviation will require the signature to be short and the signing procedure to be cryptographically relevant for the next 30 or more years. With the advent of quantum computing, many state‐of‐the‐art authentication schemes are no longer viable, so an authentication scheme implemented in satellite‐based augmentation system will need to be quantum secure. This paper introduces the cryptographic primitives (foundational problems) necessary to understand the vulnerabilities in modern‐day cryptography due to quantum computing and investigates the use of TESLA (Timed Efficient Stream Loss‐tolerant Algorithm) and EC‐Schnorr (Elliptic Curve‐Schnorr) algorithms in broadcast systems.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Cryptography</subject><subject>Curves</subject><subject>Data transmission</subject><subject>Digital signatures</subject><subject>Navigation</subject><subject>Navigation satellites</subject><subject>Quantum computing</subject><subject>Rivers</subject><subject>Satellite based augmentation systems</subject><subject>Satellites</subject><subject>Spoofing</subject><issn>0028-1522</issn><issn>2161-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQB_AgCtYq-AgLXrxsTSa7yeZYxI9CUQQVbyG7m7Qp-1GTrNKbj-Az-iSmrFdPwzC_mYE_QucEzwjGcNWpDzuDgh-gCRBG0gwEO0STOCpSkgMcoxPvNxhTknE2QW9Pg-rC0P58fTvtrQ-xS9QQ1roLtlLB9l2imlXvbFi3PjG9S7wKumls0HGnVF7X0a_a6Eftdz7o1p-iI6Mar8_-6hS93N48X9-ny8e7xfV8mVYgKE-hqHHGMw6FzjkA5lyrUlSCZ2UOouSmLmlBdUa1YCojnGNgRhksitzUwCidoovx7tb174P2QW76wXXxpQQiGGUi5ziqy1FVrvfeaSO3zrbK7STBcp-b3OcmY26RpiP9tI3e_evkw_x1sfe_wvByTg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Neish, Andrew</creator><creator>Walter, Todd</creator><creator>Enge, Per</creator><general>The Institute of Navigation</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3257-3175</orcidid><orcidid>https://orcid.org/0000-0001-9135-8363</orcidid></search><sort><creationdate>2019</creationdate><title>Quantum‐resistant authentication algorithms for satellite‐based augmentation systems</title><author>Neish, Andrew ; Walter, Todd ; Enge, Per</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-28d0474728e5722077eab9c974b529b7fdb383e43e96a4177026faf0985fd2633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Cryptography</topic><topic>Curves</topic><topic>Data transmission</topic><topic>Digital signatures</topic><topic>Navigation</topic><topic>Navigation satellites</topic><topic>Quantum computing</topic><topic>Rivers</topic><topic>Satellite based augmentation systems</topic><topic>Satellites</topic><topic>Spoofing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neish, Andrew</creatorcontrib><creatorcontrib>Walter, Todd</creatorcontrib><creatorcontrib>Enge, Per</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Navigation (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neish, Andrew</au><au>Walter, Todd</au><au>Enge, Per</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum‐resistant authentication algorithms for satellite‐based augmentation systems</atitle><jtitle>Navigation (Washington)</jtitle><date>2019</date><risdate>2019</risdate><volume>66</volume><issue>1</issue><spage>199</spage><epage>209</epage><pages>199-209</pages><issn>0028-1522</issn><eissn>2161-4296</eissn><abstract>Cryptography in the form of digital signatures can be part of the solution to the threat of spoofing and is going to be implemented on Galileo and other Global Navigation Satellite Systems. Digital signatures incorporated into the data stream authenticate the integrity of the data as well as the origin of the message. Implementing a digital signature on a satellite‐based augmentation system for use in aviation will require the signature to be short and the signing procedure to be cryptographically relevant for the next 30 or more years. With the advent of quantum computing, many state‐of‐the‐art authentication schemes are no longer viable, so an authentication scheme implemented in satellite‐based augmentation system will need to be quantum secure. This paper introduces the cryptographic primitives (foundational problems) necessary to understand the vulnerabilities in modern‐day cryptography due to quantum computing and investigates the use of TESLA (Timed Efficient Stream Loss‐tolerant Algorithm) and EC‐Schnorr (Elliptic Curve‐Schnorr) algorithms in broadcast systems.</abstract><cop>Manassas</cop><pub>The Institute of Navigation</pub><doi>10.1002/navi.287</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3257-3175</orcidid><orcidid>https://orcid.org/0000-0001-9135-8363</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-1522
ispartof Navigation (Washington), 2019, Vol.66 (1), p.199-209
issn 0028-1522
2161-4296
language eng
recordid cdi_proquest_journals_2196369570
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Computation
Cryptography
Curves
Data transmission
Digital signatures
Navigation
Navigation satellites
Quantum computing
Rivers
Satellite based augmentation systems
Satellites
Spoofing
title Quantum‐resistant authentication algorithms for satellite‐based augmentation systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%E2%80%90resistant%20authentication%20algorithms%20for%20satellite%E2%80%90based%20augmentation%20systems&rft.jtitle=Navigation%20(Washington)&rft.au=Neish,%20Andrew&rft.date=2019&rft.volume=66&rft.issue=1&rft.spage=199&rft.epage=209&rft.pages=199-209&rft.issn=0028-1522&rft.eissn=2161-4296&rft_id=info:doi/10.1002/navi.287&rft_dat=%3Cproquest_cross%3E2196369570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2196369570&rft_id=info:pmid/&rfr_iscdi=true