Thermodynamic analysis of new concepts for enhancing cooling of PV panels for grid-connected PV systems
The temperature rise in photovoltaic cells causing drop in their open-circuit voltage is a serious issue to be dealt with. A wide range of cooling techniques have been proposed by researchers due to its positive results on electrical efficiency during operation. One of the prominent techniques in th...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2019-04, Vol.136 (1), p.147-157 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 157 |
---|---|
container_issue | 1 |
container_start_page | 147 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 136 |
creator | Sopian, Kamaruzzaman Alwaeli, Ali H. A. Al-Shamani, Ali Najah Elbreki, A. M. |
description | The temperature rise in photovoltaic cells causing drop in their open-circuit voltage is a serious issue to be dealt with. A wide range of cooling techniques have been proposed by researchers due to its positive results on electrical efficiency during operation. One of the prominent techniques in the field is using a hybrid photovoltaic thermal (PV/T) design which in turns utilizes a working fluid to extract the heat from the collector. Various PV/T designs have been proposed, most prominently nanofluid and nanofluid with nano-PCM-based PV/T. This paper aims to evaluate the two techniques of cooling a grid-connected PV system and examines the systems electrical and combined efficiency, in addition to performing exergy analysis. The two systems are experimentally tested for outdoors conditions in Bangi, Malaysia. The results show the two systems achieving highest electrical exergies of 73 and 74.52 for nanofluid and nanofluid with nano-PCM, respectively. Both systems achieved higher exergies than water-cooled and conventional GCPV. |
doi_str_mv | 10.1007/s10973-018-7724-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2196263574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A579958502</galeid><sourcerecordid>A579958502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-736748fbb48591a710ad75ecd65c9e7db57afde9cf79120e9a3490bd88b04a6b3</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoso-PkDvBU8eagmadM0RxE_FgRFV68hTSbdSjdZM110_71ZKogHyWGGyfOEJG-WnVJyQQkRl0iJFGVBaFMIwapC7GQHlDdNwSSrd1Nfpr6mnOxnh4jvhBApCT3IuvkC4jLYjdfL3uTa62GDPebB5R4-cxO8gdWIuQsxB7_Q3vS-S-MwbGuint7ylfYwTEgXe1skyYMZwW43cYMjLPE423N6QDj5qUfZ6-3N_Pq-eHi8m11fPRSmYvVYiLIWVePatmq4pFpQoq3gYGzNjQRhWy60syCNE5IyAlKXlSStbZqWVLpuy6PsbDp3FcPHGnBU72Ed06tQMSprVpdcVIm6mKhOD6B678IYtUnLQvqF4MH1aX7FhZS84YQl4fyPkJgRvsZOrxHV7OX5L0sn1sSAGMGpVeyXOm4UJWoblprCUikstQ1LieSwycHE-g7i77X_l74BQseXEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196263574</pqid></control><display><type>article</type><title>Thermodynamic analysis of new concepts for enhancing cooling of PV panels for grid-connected PV systems</title><source>SpringerNature Journals</source><creator>Sopian, Kamaruzzaman ; Alwaeli, Ali H. A. ; Al-Shamani, Ali Najah ; Elbreki, A. M.</creator><creatorcontrib>Sopian, Kamaruzzaman ; Alwaeli, Ali H. A. ; Al-Shamani, Ali Najah ; Elbreki, A. M.</creatorcontrib><description>The temperature rise in photovoltaic cells causing drop in their open-circuit voltage is a serious issue to be dealt with. A wide range of cooling techniques have been proposed by researchers due to its positive results on electrical efficiency during operation. One of the prominent techniques in the field is using a hybrid photovoltaic thermal (PV/T) design which in turns utilizes a working fluid to extract the heat from the collector. Various PV/T designs have been proposed, most prominently nanofluid and nanofluid with nano-PCM-based PV/T. This paper aims to evaluate the two techniques of cooling a grid-connected PV system and examines the systems electrical and combined efficiency, in addition to performing exergy analysis. The two systems are experimentally tested for outdoors conditions in Bangi, Malaysia. The results show the two systems achieving highest electrical exergies of 73 and 74.52 for nanofluid and nanofluid with nano-PCM, respectively. Both systems achieved higher exergies than water-cooled and conventional GCPV.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-018-7724-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Cooling ; Energy (Physics) ; Energy efficiency ; Exergy ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Nanofluids ; Open circuit voltage ; Photovoltaic cells ; Physical Chemistry ; Polymer Sciences ; Renewable energy ; Solar cells ; Solar energy ; Solar energy industry ; Thermodynamics ; Working fluids</subject><ispartof>Journal of thermal analysis and calorimetry, 2019-04, Vol.136 (1), p.147-157</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-736748fbb48591a710ad75ecd65c9e7db57afde9cf79120e9a3490bd88b04a6b3</citedby><cites>FETCH-LOGICAL-c426t-736748fbb48591a710ad75ecd65c9e7db57afde9cf79120e9a3490bd88b04a6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-018-7724-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-018-7724-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sopian, Kamaruzzaman</creatorcontrib><creatorcontrib>Alwaeli, Ali H. A.</creatorcontrib><creatorcontrib>Al-Shamani, Ali Najah</creatorcontrib><creatorcontrib>Elbreki, A. M.</creatorcontrib><title>Thermodynamic analysis of new concepts for enhancing cooling of PV panels for grid-connected PV systems</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>The temperature rise in photovoltaic cells causing drop in their open-circuit voltage is a serious issue to be dealt with. A wide range of cooling techniques have been proposed by researchers due to its positive results on electrical efficiency during operation. One of the prominent techniques in the field is using a hybrid photovoltaic thermal (PV/T) design which in turns utilizes a working fluid to extract the heat from the collector. Various PV/T designs have been proposed, most prominently nanofluid and nanofluid with nano-PCM-based PV/T. This paper aims to evaluate the two techniques of cooling a grid-connected PV system and examines the systems electrical and combined efficiency, in addition to performing exergy analysis. The two systems are experimentally tested for outdoors conditions in Bangi, Malaysia. The results show the two systems achieving highest electrical exergies of 73 and 74.52 for nanofluid and nanofluid with nano-PCM, respectively. Both systems achieved higher exergies than water-cooled and conventional GCPV.</description><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cooling</subject><subject>Energy (Physics)</subject><subject>Energy efficiency</subject><subject>Exergy</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Nanofluids</subject><subject>Open circuit voltage</subject><subject>Photovoltaic cells</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Renewable energy</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Solar energy industry</subject><subject>Thermodynamics</subject><subject>Working fluids</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LxDAQhoso-PkDvBU8eagmadM0RxE_FgRFV68hTSbdSjdZM110_71ZKogHyWGGyfOEJG-WnVJyQQkRl0iJFGVBaFMIwapC7GQHlDdNwSSrd1Nfpr6mnOxnh4jvhBApCT3IuvkC4jLYjdfL3uTa62GDPebB5R4-cxO8gdWIuQsxB7_Q3vS-S-MwbGuint7ylfYwTEgXe1skyYMZwW43cYMjLPE423N6QDj5qUfZ6-3N_Pq-eHi8m11fPRSmYvVYiLIWVePatmq4pFpQoq3gYGzNjQRhWy60syCNE5IyAlKXlSStbZqWVLpuy6PsbDp3FcPHGnBU72Ed06tQMSprVpdcVIm6mKhOD6B678IYtUnLQvqF4MH1aX7FhZS84YQl4fyPkJgRvsZOrxHV7OX5L0sn1sSAGMGpVeyXOm4UJWoblprCUikstQ1LieSwycHE-g7i77X_l74BQseXEw</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Sopian, Kamaruzzaman</creator><creator>Alwaeli, Ali H. A.</creator><creator>Al-Shamani, Ali Najah</creator><creator>Elbreki, A. M.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20190401</creationdate><title>Thermodynamic analysis of new concepts for enhancing cooling of PV panels for grid-connected PV systems</title><author>Sopian, Kamaruzzaman ; Alwaeli, Ali H. A. ; Al-Shamani, Ali Najah ; Elbreki, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-736748fbb48591a710ad75ecd65c9e7db57afde9cf79120e9a3490bd88b04a6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cooling</topic><topic>Energy (Physics)</topic><topic>Energy efficiency</topic><topic>Exergy</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Nanofluids</topic><topic>Open circuit voltage</topic><topic>Photovoltaic cells</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Renewable energy</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Solar energy industry</topic><topic>Thermodynamics</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sopian, Kamaruzzaman</creatorcontrib><creatorcontrib>Alwaeli, Ali H. A.</creatorcontrib><creatorcontrib>Al-Shamani, Ali Najah</creatorcontrib><creatorcontrib>Elbreki, A. M.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sopian, Kamaruzzaman</au><au>Alwaeli, Ali H. A.</au><au>Al-Shamani, Ali Najah</au><au>Elbreki, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic analysis of new concepts for enhancing cooling of PV panels for grid-connected PV systems</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>136</volume><issue>1</issue><spage>147</spage><epage>157</epage><pages>147-157</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>The temperature rise in photovoltaic cells causing drop in their open-circuit voltage is a serious issue to be dealt with. A wide range of cooling techniques have been proposed by researchers due to its positive results on electrical efficiency during operation. One of the prominent techniques in the field is using a hybrid photovoltaic thermal (PV/T) design which in turns utilizes a working fluid to extract the heat from the collector. Various PV/T designs have been proposed, most prominently nanofluid and nanofluid with nano-PCM-based PV/T. This paper aims to evaluate the two techniques of cooling a grid-connected PV system and examines the systems electrical and combined efficiency, in addition to performing exergy analysis. The two systems are experimentally tested for outdoors conditions in Bangi, Malaysia. The results show the two systems achieving highest electrical exergies of 73 and 74.52 for nanofluid and nanofluid with nano-PCM, respectively. Both systems achieved higher exergies than water-cooled and conventional GCPV.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-018-7724-7</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2019-04, Vol.136 (1), p.147-157 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_2196263574 |
source | SpringerNature Journals |
subjects | Analysis Analytical Chemistry Chemistry Chemistry and Materials Science Cooling Energy (Physics) Energy efficiency Exergy Inorganic Chemistry Measurement Science and Instrumentation Nanofluids Open circuit voltage Photovoltaic cells Physical Chemistry Polymer Sciences Renewable energy Solar cells Solar energy Solar energy industry Thermodynamics Working fluids |
title | Thermodynamic analysis of new concepts for enhancing cooling of PV panels for grid-connected PV systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A52%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20analysis%20of%20new%20concepts%20for%20enhancing%20cooling%20of%20PV%20panels%20for%20grid-connected%20PV%20systems&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Sopian,%20Kamaruzzaman&rft.date=2019-04-01&rft.volume=136&rft.issue=1&rft.spage=147&rft.epage=157&rft.pages=147-157&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-018-7724-7&rft_dat=%3Cgale_proqu%3EA579958502%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2196263574&rft_id=info:pmid/&rft_galeid=A579958502&rfr_iscdi=true |