Enhancing cultural recommendations through social and linked open data

In this article, we describe a hybrid recommender system (RS) in the artistic and cultural heritage area, which takes into account the activities on social media performed by the target user and her friends, and takes advantage of linked open data (LOD) sources. Concretely, the proposed RS (1) extra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:User modeling and user-adapted interaction 2019-03, Vol.29 (1), p.121-159
Hauptverfasser: Sansonetti, Giuseppe, Gasparetti, Fabio, Micarelli, Alessandro, Cena, Federica, Gena, Cristina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 1
container_start_page 121
container_title User modeling and user-adapted interaction
container_volume 29
creator Sansonetti, Giuseppe
Gasparetti, Fabio
Micarelli, Alessandro
Cena, Federica
Gena, Cristina
description In this article, we describe a hybrid recommender system (RS) in the artistic and cultural heritage area, which takes into account the activities on social media performed by the target user and her friends, and takes advantage of linked open data (LOD) sources. Concretely, the proposed RS (1) extracts information from Facebook by analyzing content generated by users and their friends; (2) performs disambiguation tasks through LOD tools; (3) profiles the active user as a social graph; (4) provides her with personalized suggestions of artistic and cultural resources in the surroundings of the user’s current location. The last point is performed by integrating collaborative filtering algorithms with semantic technologies in order to leverage LOD sources such as DBpedia and Europeana. Based on the recommended points of cultural interest, the proposed system is also able to suggest to the active user itineraries among them, which meet her preferences and needs and are sensitive to her physical and social contexts as well. Experimental results on real users showed the effectiveness of the different modules of the proposed recommender.
doi_str_mv 10.1007/s11257-019-09225-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2196100889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2196100889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-2ebb11dc832e77eab31d231d2a630293b9bf0eecc269192339d2d18f33c198b83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczSTsbvJUUr9gIIXPYdskm23bpOa7B7896au4M3DEJg87zvwEHIN_BY4r-8ygFjUjINiXAmxYPKEzGBRIwNUcEpmZXvPQFbynFzkvOMlVNVqRh5XYWuC7cKG2rEfxmR6mryN-70PzgxdDJkO2xTHzZbmaLvybYKjfRc-vKPx4AMtmLkkZ63ps7_6fefk_XH1tnxm69enl-XDmlmscGDCNw2AsxKFr2tvGgQnjmMq5EJho5qWe2-tqBQogaiccCBbRAtKNhLn5GbqPaT4Ofo86F0cUygntQBVFRdSqkKJibIp5px8qw-p25v0pYHroy89-dLFl_7xpY_VOIVygcPGp7_qf1LfeUdtqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196100889</pqid></control><display><type>article</type><title>Enhancing cultural recommendations through social and linked open data</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sansonetti, Giuseppe ; Gasparetti, Fabio ; Micarelli, Alessandro ; Cena, Federica ; Gena, Cristina</creator><creatorcontrib>Sansonetti, Giuseppe ; Gasparetti, Fabio ; Micarelli, Alessandro ; Cena, Federica ; Gena, Cristina</creatorcontrib><description>In this article, we describe a hybrid recommender system (RS) in the artistic and cultural heritage area, which takes into account the activities on social media performed by the target user and her friends, and takes advantage of linked open data (LOD) sources. Concretely, the proposed RS (1) extracts information from Facebook by analyzing content generated by users and their friends; (2) performs disambiguation tasks through LOD tools; (3) profiles the active user as a social graph; (4) provides her with personalized suggestions of artistic and cultural resources in the surroundings of the user’s current location. The last point is performed by integrating collaborative filtering algorithms with semantic technologies in order to leverage LOD sources such as DBpedia and Europeana. Based on the recommended points of cultural interest, the proposed system is also able to suggest to the active user itineraries among them, which meet her preferences and needs and are sensitive to her physical and social contexts as well. Experimental results on real users showed the effectiveness of the different modules of the proposed recommender.</description><identifier>ISSN: 0924-1868</identifier><identifier>EISSN: 1573-1391</identifier><identifier>DOI: 10.1007/s11257-019-09225-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Computer Science ; Content analysis ; Cultural heritage ; Cultural resources ; Digital media ; Hybrid systems ; Linked Data ; Management of Computing and Information Systems ; Multimedia Information Systems ; Open data ; Recommender systems ; Social networks ; User Interfaces and Human Computer Interaction</subject><ispartof>User modeling and user-adapted interaction, 2019-03, Vol.29 (1), p.121-159</ispartof><rights>Springer Nature B.V. 2019</rights><rights>User Modeling and User-Adapted Interaction is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-2ebb11dc832e77eab31d231d2a630293b9bf0eecc269192339d2d18f33c198b83</citedby><cites>FETCH-LOGICAL-c363t-2ebb11dc832e77eab31d231d2a630293b9bf0eecc269192339d2d18f33c198b83</cites><orcidid>0000-0003-4953-1390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11257-019-09225-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11257-019-09225-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Sansonetti, Giuseppe</creatorcontrib><creatorcontrib>Gasparetti, Fabio</creatorcontrib><creatorcontrib>Micarelli, Alessandro</creatorcontrib><creatorcontrib>Cena, Federica</creatorcontrib><creatorcontrib>Gena, Cristina</creatorcontrib><title>Enhancing cultural recommendations through social and linked open data</title><title>User modeling and user-adapted interaction</title><addtitle>User Model User-Adap Inter</addtitle><description>In this article, we describe a hybrid recommender system (RS) in the artistic and cultural heritage area, which takes into account the activities on social media performed by the target user and her friends, and takes advantage of linked open data (LOD) sources. Concretely, the proposed RS (1) extracts information from Facebook by analyzing content generated by users and their friends; (2) performs disambiguation tasks through LOD tools; (3) profiles the active user as a social graph; (4) provides her with personalized suggestions of artistic and cultural resources in the surroundings of the user’s current location. The last point is performed by integrating collaborative filtering algorithms with semantic technologies in order to leverage LOD sources such as DBpedia and Europeana. Based on the recommended points of cultural interest, the proposed system is also able to suggest to the active user itineraries among them, which meet her preferences and needs and are sensitive to her physical and social contexts as well. Experimental results on real users showed the effectiveness of the different modules of the proposed recommender.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Content analysis</subject><subject>Cultural heritage</subject><subject>Cultural resources</subject><subject>Digital media</subject><subject>Hybrid systems</subject><subject>Linked Data</subject><subject>Management of Computing and Information Systems</subject><subject>Multimedia Information Systems</subject><subject>Open data</subject><subject>Recommender systems</subject><subject>Social networks</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>0924-1868</issn><issn>1573-1391</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczSTsbvJUUr9gIIXPYdskm23bpOa7B7896au4M3DEJg87zvwEHIN_BY4r-8ygFjUjINiXAmxYPKEzGBRIwNUcEpmZXvPQFbynFzkvOMlVNVqRh5XYWuC7cKG2rEfxmR6mryN-70PzgxdDJkO2xTHzZbmaLvybYKjfRc-vKPx4AMtmLkkZ63ps7_6fefk_XH1tnxm69enl-XDmlmscGDCNw2AsxKFr2tvGgQnjmMq5EJho5qWe2-tqBQogaiccCBbRAtKNhLn5GbqPaT4Ofo86F0cUygntQBVFRdSqkKJibIp5px8qw-p25v0pYHroy89-dLFl_7xpY_VOIVygcPGp7_qf1LfeUdtqw</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Sansonetti, Giuseppe</creator><creator>Gasparetti, Fabio</creator><creator>Micarelli, Alessandro</creator><creator>Cena, Federica</creator><creator>Gena, Cristina</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88G</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4953-1390</orcidid></search><sort><creationdate>20190301</creationdate><title>Enhancing cultural recommendations through social and linked open data</title><author>Sansonetti, Giuseppe ; Gasparetti, Fabio ; Micarelli, Alessandro ; Cena, Federica ; Gena, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-2ebb11dc832e77eab31d231d2a630293b9bf0eecc269192339d2d18f33c198b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Content analysis</topic><topic>Cultural heritage</topic><topic>Cultural resources</topic><topic>Digital media</topic><topic>Hybrid systems</topic><topic>Linked Data</topic><topic>Management of Computing and Information Systems</topic><topic>Multimedia Information Systems</topic><topic>Open data</topic><topic>Recommender systems</topic><topic>Social networks</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sansonetti, Giuseppe</creatorcontrib><creatorcontrib>Gasparetti, Fabio</creatorcontrib><creatorcontrib>Micarelli, Alessandro</creatorcontrib><creatorcontrib>Cena, Federica</creatorcontrib><creatorcontrib>Gena, Cristina</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Psychology Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>User modeling and user-adapted interaction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sansonetti, Giuseppe</au><au>Gasparetti, Fabio</au><au>Micarelli, Alessandro</au><au>Cena, Federica</au><au>Gena, Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing cultural recommendations through social and linked open data</atitle><jtitle>User modeling and user-adapted interaction</jtitle><stitle>User Model User-Adap Inter</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>29</volume><issue>1</issue><spage>121</spage><epage>159</epage><pages>121-159</pages><issn>0924-1868</issn><eissn>1573-1391</eissn><abstract>In this article, we describe a hybrid recommender system (RS) in the artistic and cultural heritage area, which takes into account the activities on social media performed by the target user and her friends, and takes advantage of linked open data (LOD) sources. Concretely, the proposed RS (1) extracts information from Facebook by analyzing content generated by users and their friends; (2) performs disambiguation tasks through LOD tools; (3) profiles the active user as a social graph; (4) provides her with personalized suggestions of artistic and cultural resources in the surroundings of the user’s current location. The last point is performed by integrating collaborative filtering algorithms with semantic technologies in order to leverage LOD sources such as DBpedia and Europeana. Based on the recommended points of cultural interest, the proposed system is also able to suggest to the active user itineraries among them, which meet her preferences and needs and are sensitive to her physical and social contexts as well. Experimental results on real users showed the effectiveness of the different modules of the proposed recommender.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11257-019-09225-8</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0003-4953-1390</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-1868
ispartof User modeling and user-adapted interaction, 2019-03, Vol.29 (1), p.121-159
issn 0924-1868
1573-1391
language eng
recordid cdi_proquest_journals_2196100889
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Algorithms
Computer Science
Content analysis
Cultural heritage
Cultural resources
Digital media
Hybrid systems
Linked Data
Management of Computing and Information Systems
Multimedia Information Systems
Open data
Recommender systems
Social networks
User Interfaces and Human Computer Interaction
title Enhancing cultural recommendations through social and linked open data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20cultural%20recommendations%20through%20social%20and%20linked%20open%20data&rft.jtitle=User%20modeling%20and%20user-adapted%20interaction&rft.au=Sansonetti,%20Giuseppe&rft.date=2019-03-01&rft.volume=29&rft.issue=1&rft.spage=121&rft.epage=159&rft.pages=121-159&rft.issn=0924-1868&rft.eissn=1573-1391&rft_id=info:doi/10.1007/s11257-019-09225-8&rft_dat=%3Cproquest_cross%3E2196100889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2196100889&rft_id=info:pmid/&rfr_iscdi=true