Enhancing cultural recommendations through social and linked open data
In this article, we describe a hybrid recommender system (RS) in the artistic and cultural heritage area, which takes into account the activities on social media performed by the target user and her friends, and takes advantage of linked open data (LOD) sources. Concretely, the proposed RS (1) extra...
Gespeichert in:
Veröffentlicht in: | User modeling and user-adapted interaction 2019-03, Vol.29 (1), p.121-159 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 159 |
---|---|
container_issue | 1 |
container_start_page | 121 |
container_title | User modeling and user-adapted interaction |
container_volume | 29 |
creator | Sansonetti, Giuseppe Gasparetti, Fabio Micarelli, Alessandro Cena, Federica Gena, Cristina |
description | In this article, we describe a hybrid recommender system (RS) in the artistic and cultural heritage area, which takes into account the activities on social media performed by the target user and her friends, and takes advantage of linked open data (LOD) sources. Concretely, the proposed RS (1) extracts information from Facebook by analyzing content generated by users and their friends; (2) performs disambiguation tasks through LOD tools; (3) profiles the active user as a social graph; (4) provides her with personalized suggestions of artistic and cultural resources in the surroundings of the user’s current location. The last point is performed by integrating collaborative filtering algorithms with semantic technologies in order to leverage LOD sources such as DBpedia and Europeana. Based on the recommended points of cultural interest, the proposed system is also able to suggest to the active user itineraries among them, which meet her preferences and needs and are sensitive to her physical and social contexts as well. Experimental results on real users showed the effectiveness of the different modules of the proposed recommender. |
doi_str_mv | 10.1007/s11257-019-09225-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2196100889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2196100889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-2ebb11dc832e77eab31d231d2a630293b9bf0eecc269192339d2d18f33c198b83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczSTsbvJUUr9gIIXPYdskm23bpOa7B7896au4M3DEJg87zvwEHIN_BY4r-8ygFjUjINiXAmxYPKEzGBRIwNUcEpmZXvPQFbynFzkvOMlVNVqRh5XYWuC7cKG2rEfxmR6mryN-70PzgxdDJkO2xTHzZbmaLvybYKjfRc-vKPx4AMtmLkkZ63ps7_6fefk_XH1tnxm69enl-XDmlmscGDCNw2AsxKFr2tvGgQnjmMq5EJho5qWe2-tqBQogaiccCBbRAtKNhLn5GbqPaT4Ofo86F0cUygntQBVFRdSqkKJibIp5px8qw-p25v0pYHroy89-dLFl_7xpY_VOIVygcPGp7_qf1LfeUdtqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196100889</pqid></control><display><type>article</type><title>Enhancing cultural recommendations through social and linked open data</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sansonetti, Giuseppe ; Gasparetti, Fabio ; Micarelli, Alessandro ; Cena, Federica ; Gena, Cristina</creator><creatorcontrib>Sansonetti, Giuseppe ; Gasparetti, Fabio ; Micarelli, Alessandro ; Cena, Federica ; Gena, Cristina</creatorcontrib><description>In this article, we describe a hybrid recommender system (RS) in the artistic and cultural heritage area, which takes into account the activities on social media performed by the target user and her friends, and takes advantage of linked open data (LOD) sources. Concretely, the proposed RS (1) extracts information from Facebook by analyzing content generated by users and their friends; (2) performs disambiguation tasks through LOD tools; (3) profiles the active user as a social graph; (4) provides her with personalized suggestions of artistic and cultural resources in the surroundings of the user’s current location. The last point is performed by integrating collaborative filtering algorithms with semantic technologies in order to leverage LOD sources such as DBpedia and Europeana. Based on the recommended points of cultural interest, the proposed system is also able to suggest to the active user itineraries among them, which meet her preferences and needs and are sensitive to her physical and social contexts as well. Experimental results on real users showed the effectiveness of the different modules of the proposed recommender.</description><identifier>ISSN: 0924-1868</identifier><identifier>EISSN: 1573-1391</identifier><identifier>DOI: 10.1007/s11257-019-09225-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Computer Science ; Content analysis ; Cultural heritage ; Cultural resources ; Digital media ; Hybrid systems ; Linked Data ; Management of Computing and Information Systems ; Multimedia Information Systems ; Open data ; Recommender systems ; Social networks ; User Interfaces and Human Computer Interaction</subject><ispartof>User modeling and user-adapted interaction, 2019-03, Vol.29 (1), p.121-159</ispartof><rights>Springer Nature B.V. 2019</rights><rights>User Modeling and User-Adapted Interaction is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-2ebb11dc832e77eab31d231d2a630293b9bf0eecc269192339d2d18f33c198b83</citedby><cites>FETCH-LOGICAL-c363t-2ebb11dc832e77eab31d231d2a630293b9bf0eecc269192339d2d18f33c198b83</cites><orcidid>0000-0003-4953-1390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11257-019-09225-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11257-019-09225-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Sansonetti, Giuseppe</creatorcontrib><creatorcontrib>Gasparetti, Fabio</creatorcontrib><creatorcontrib>Micarelli, Alessandro</creatorcontrib><creatorcontrib>Cena, Federica</creatorcontrib><creatorcontrib>Gena, Cristina</creatorcontrib><title>Enhancing cultural recommendations through social and linked open data</title><title>User modeling and user-adapted interaction</title><addtitle>User Model User-Adap Inter</addtitle><description>In this article, we describe a hybrid recommender system (RS) in the artistic and cultural heritage area, which takes into account the activities on social media performed by the target user and her friends, and takes advantage of linked open data (LOD) sources. Concretely, the proposed RS (1) extracts information from Facebook by analyzing content generated by users and their friends; (2) performs disambiguation tasks through LOD tools; (3) profiles the active user as a social graph; (4) provides her with personalized suggestions of artistic and cultural resources in the surroundings of the user’s current location. The last point is performed by integrating collaborative filtering algorithms with semantic technologies in order to leverage LOD sources such as DBpedia and Europeana. Based on the recommended points of cultural interest, the proposed system is also able to suggest to the active user itineraries among them, which meet her preferences and needs and are sensitive to her physical and social contexts as well. Experimental results on real users showed the effectiveness of the different modules of the proposed recommender.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Content analysis</subject><subject>Cultural heritage</subject><subject>Cultural resources</subject><subject>Digital media</subject><subject>Hybrid systems</subject><subject>Linked Data</subject><subject>Management of Computing and Information Systems</subject><subject>Multimedia Information Systems</subject><subject>Open data</subject><subject>Recommender systems</subject><subject>Social networks</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>0924-1868</issn><issn>1573-1391</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczSTsbvJUUr9gIIXPYdskm23bpOa7B7896au4M3DEJg87zvwEHIN_BY4r-8ygFjUjINiXAmxYPKEzGBRIwNUcEpmZXvPQFbynFzkvOMlVNVqRh5XYWuC7cKG2rEfxmR6mryN-70PzgxdDJkO2xTHzZbmaLvybYKjfRc-vKPx4AMtmLkkZ63ps7_6fefk_XH1tnxm69enl-XDmlmscGDCNw2AsxKFr2tvGgQnjmMq5EJho5qWe2-tqBQogaiccCBbRAtKNhLn5GbqPaT4Ofo86F0cUygntQBVFRdSqkKJibIp5px8qw-p25v0pYHroy89-dLFl_7xpY_VOIVygcPGp7_qf1LfeUdtqw</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Sansonetti, Giuseppe</creator><creator>Gasparetti, Fabio</creator><creator>Micarelli, Alessandro</creator><creator>Cena, Federica</creator><creator>Gena, Cristina</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88G</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4953-1390</orcidid></search><sort><creationdate>20190301</creationdate><title>Enhancing cultural recommendations through social and linked open data</title><author>Sansonetti, Giuseppe ; Gasparetti, Fabio ; Micarelli, Alessandro ; Cena, Federica ; Gena, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-2ebb11dc832e77eab31d231d2a630293b9bf0eecc269192339d2d18f33c198b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Content analysis</topic><topic>Cultural heritage</topic><topic>Cultural resources</topic><topic>Digital media</topic><topic>Hybrid systems</topic><topic>Linked Data</topic><topic>Management of Computing and Information Systems</topic><topic>Multimedia Information Systems</topic><topic>Open data</topic><topic>Recommender systems</topic><topic>Social networks</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sansonetti, Giuseppe</creatorcontrib><creatorcontrib>Gasparetti, Fabio</creatorcontrib><creatorcontrib>Micarelli, Alessandro</creatorcontrib><creatorcontrib>Cena, Federica</creatorcontrib><creatorcontrib>Gena, Cristina</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Psychology Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>User modeling and user-adapted interaction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sansonetti, Giuseppe</au><au>Gasparetti, Fabio</au><au>Micarelli, Alessandro</au><au>Cena, Federica</au><au>Gena, Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing cultural recommendations through social and linked open data</atitle><jtitle>User modeling and user-adapted interaction</jtitle><stitle>User Model User-Adap Inter</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>29</volume><issue>1</issue><spage>121</spage><epage>159</epage><pages>121-159</pages><issn>0924-1868</issn><eissn>1573-1391</eissn><abstract>In this article, we describe a hybrid recommender system (RS) in the artistic and cultural heritage area, which takes into account the activities on social media performed by the target user and her friends, and takes advantage of linked open data (LOD) sources. Concretely, the proposed RS (1) extracts information from Facebook by analyzing content generated by users and their friends; (2) performs disambiguation tasks through LOD tools; (3) profiles the active user as a social graph; (4) provides her with personalized suggestions of artistic and cultural resources in the surroundings of the user’s current location. The last point is performed by integrating collaborative filtering algorithms with semantic technologies in order to leverage LOD sources such as DBpedia and Europeana. Based on the recommended points of cultural interest, the proposed system is also able to suggest to the active user itineraries among them, which meet her preferences and needs and are sensitive to her physical and social contexts as well. Experimental results on real users showed the effectiveness of the different modules of the proposed recommender.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11257-019-09225-8</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0003-4953-1390</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-1868 |
ispartof | User modeling and user-adapted interaction, 2019-03, Vol.29 (1), p.121-159 |
issn | 0924-1868 1573-1391 |
language | eng |
recordid | cdi_proquest_journals_2196100889 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Computer Science Content analysis Cultural heritage Cultural resources Digital media Hybrid systems Linked Data Management of Computing and Information Systems Multimedia Information Systems Open data Recommender systems Social networks User Interfaces and Human Computer Interaction |
title | Enhancing cultural recommendations through social and linked open data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20cultural%20recommendations%20through%20social%20and%20linked%20open%20data&rft.jtitle=User%20modeling%20and%20user-adapted%20interaction&rft.au=Sansonetti,%20Giuseppe&rft.date=2019-03-01&rft.volume=29&rft.issue=1&rft.spage=121&rft.epage=159&rft.pages=121-159&rft.issn=0924-1868&rft.eissn=1573-1391&rft_id=info:doi/10.1007/s11257-019-09225-8&rft_dat=%3Cproquest_cross%3E2196100889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2196100889&rft_id=info:pmid/&rfr_iscdi=true |