Tail asymptotic for discounted aggregate claims with one-sided linear dependence and general investment return

In this study, we investigate the tail probability of the discounted aggregate claim sizes in a dependent risk model. In this model, the claim sizes are observed to follow a one-sided linear process with independent and identically distributed innovations. Investment return is described as a general...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2019-04, Vol.62 (4), p.735-750
Hauptverfasser: Guo, Fenglong, Wang, Dingcheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 750
container_issue 4
container_start_page 735
container_title Science China. Mathematics
container_volume 62
creator Guo, Fenglong
Wang, Dingcheng
description In this study, we investigate the tail probability of the discounted aggregate claim sizes in a dependent risk model. In this model, the claim sizes are observed to follow a one-sided linear process with independent and identically distributed innovations. Investment return is described as a general stochastic process with cádlág paths. In the case of heavy-tailed innovation distributions, we are able to derive some asymptotic estimates for tail probability and to provide some asymptotic upper bounds to improve the applicability of our study.
doi_str_mv 10.1007/s11425-017-9167-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2195991921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2195991921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-fefc2f07769c78431ba2d203e33fc189ffa6265061c4de56c341406dcf4e71d43</originalsourceid><addsrcrecordid>eNp1UE1LhCEQfomCovoB3YTOlqOurseIviDosp3FdHwz3vXd1C369xkbdGoOMwPzfAzPMJwBuwDG9GUFkHxBGWhqQGnK9oYjWCpDe-P7fVdaUs2X4nA4rfWN9RKGSS2OhrxyaSKufq03bW7JkzgXElL18zY3DMSNY8HRNSR-cmldyWdqr2TOSGsK_T6ljK4zcIM5YPZIXA5kxIzFTSTlD6xtjbmRgm1b8slwEN1U8fR3Hg_Ptzer63v6-HT3cH31SL0A1WjE6HlkWivj9VIKeHE8cCZQiOhhaWJ0iqsFU-BlwIXyQoJkKvgoUUOQ4ng43-luyvy-7T_Yt7nbd0vLwSyMAcOho2CH8mWutWC0m5LWrnxZYPYnWbtL1vZk7U-ylnUO33Fqx-YRy5_y_6RvPsZ86w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2195991921</pqid></control><display><type>article</type><title>Tail asymptotic for discounted aggregate claims with one-sided linear dependence and general investment return</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Guo, Fenglong ; Wang, Dingcheng</creator><creatorcontrib>Guo, Fenglong ; Wang, Dingcheng</creatorcontrib><description>In this study, we investigate the tail probability of the discounted aggregate claim sizes in a dependent risk model. In this model, the claim sizes are observed to follow a one-sided linear process with independent and identically distributed innovations. Investment return is described as a general stochastic process with cádlág paths. In the case of heavy-tailed innovation distributions, we are able to derive some asymptotic estimates for tail probability and to provide some asymptotic upper bounds to improve the applicability of our study.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-017-9167-0</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Asymptotic properties ; Dependence ; Innovations ; Investment ; Mathematics ; Mathematics and Statistics ; Stochastic processes ; Upper bounds</subject><ispartof>Science China. Mathematics, 2019-04, Vol.62 (4), p.735-750</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-fefc2f07769c78431ba2d203e33fc189ffa6265061c4de56c341406dcf4e71d43</citedby><cites>FETCH-LOGICAL-c316t-fefc2f07769c78431ba2d203e33fc189ffa6265061c4de56c341406dcf4e71d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-017-9167-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-017-9167-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Guo, Fenglong</creatorcontrib><creatorcontrib>Wang, Dingcheng</creatorcontrib><title>Tail asymptotic for discounted aggregate claims with one-sided linear dependence and general investment return</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>In this study, we investigate the tail probability of the discounted aggregate claim sizes in a dependent risk model. In this model, the claim sizes are observed to follow a one-sided linear process with independent and identically distributed innovations. Investment return is described as a general stochastic process with cádlág paths. In the case of heavy-tailed innovation distributions, we are able to derive some asymptotic estimates for tail probability and to provide some asymptotic upper bounds to improve the applicability of our study.</description><subject>Applications of Mathematics</subject><subject>Asymptotic properties</subject><subject>Dependence</subject><subject>Innovations</subject><subject>Investment</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Stochastic processes</subject><subject>Upper bounds</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LhCEQfomCovoB3YTOlqOurseIviDosp3FdHwz3vXd1C369xkbdGoOMwPzfAzPMJwBuwDG9GUFkHxBGWhqQGnK9oYjWCpDe-P7fVdaUs2X4nA4rfWN9RKGSS2OhrxyaSKufq03bW7JkzgXElL18zY3DMSNY8HRNSR-cmldyWdqr2TOSGsK_T6ljK4zcIM5YPZIXA5kxIzFTSTlD6xtjbmRgm1b8slwEN1U8fR3Hg_Ptzer63v6-HT3cH31SL0A1WjE6HlkWivj9VIKeHE8cCZQiOhhaWJ0iqsFU-BlwIXyQoJkKvgoUUOQ4ng43-luyvy-7T_Yt7nbd0vLwSyMAcOho2CH8mWutWC0m5LWrnxZYPYnWbtL1vZk7U-ylnUO33Fqx-YRy5_y_6RvPsZ86w</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Guo, Fenglong</creator><creator>Wang, Dingcheng</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190401</creationdate><title>Tail asymptotic for discounted aggregate claims with one-sided linear dependence and general investment return</title><author>Guo, Fenglong ; Wang, Dingcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-fefc2f07769c78431ba2d203e33fc189ffa6265061c4de56c341406dcf4e71d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Asymptotic properties</topic><topic>Dependence</topic><topic>Innovations</topic><topic>Investment</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Stochastic processes</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Fenglong</creatorcontrib><creatorcontrib>Wang, Dingcheng</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Fenglong</au><au>Wang, Dingcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tail asymptotic for discounted aggregate claims with one-sided linear dependence and general investment return</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>62</volume><issue>4</issue><spage>735</spage><epage>750</epage><pages>735-750</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>In this study, we investigate the tail probability of the discounted aggregate claim sizes in a dependent risk model. In this model, the claim sizes are observed to follow a one-sided linear process with independent and identically distributed innovations. Investment return is described as a general stochastic process with cádlág paths. In the case of heavy-tailed innovation distributions, we are able to derive some asymptotic estimates for tail probability and to provide some asymptotic upper bounds to improve the applicability of our study.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-017-9167-0</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7283
ispartof Science China. Mathematics, 2019-04, Vol.62 (4), p.735-750
issn 1674-7283
1869-1862
language eng
recordid cdi_proquest_journals_2195991921
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Asymptotic properties
Dependence
Innovations
Investment
Mathematics
Mathematics and Statistics
Stochastic processes
Upper bounds
title Tail asymptotic for discounted aggregate claims with one-sided linear dependence and general investment return
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tail%20asymptotic%20for%20discounted%20aggregate%20claims%20with%20one-sided%20linear%20dependence%20and%20general%20investment%20return&rft.jtitle=Science%20China.%20Mathematics&rft.au=Guo,%20Fenglong&rft.date=2019-04-01&rft.volume=62&rft.issue=4&rft.spage=735&rft.epage=750&rft.pages=735-750&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-017-9167-0&rft_dat=%3Cproquest_cross%3E2195991921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2195991921&rft_id=info:pmid/&rfr_iscdi=true