Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors

Conducting polymer hydrogels (CPHs) advantageously synergize the features of both hydrogels and conducting polymers and have gained ground in various applications such as energy storage devices, catalysis and sensors. Conventional synthesis of CPHs usually couples with introducing of non-conductive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2019-04, Vol.301, p.136-144
Hauptverfasser: Chu, Xiang, Huang, Haichao, Zhang, Haitao, Zhang, Hepeng, Gu, Bingni, Su, Hai, Liu, Fangyan, Han, Yu, Wang, Zixing, Chen, Ningjun, Yan, Cheng, Deng, Wen, Deng, Weili, Yang, Weiqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue
container_start_page 136
container_title Electrochimica acta
container_volume 301
creator Chu, Xiang
Huang, Haichao
Zhang, Haitao
Zhang, Hepeng
Gu, Bingni
Su, Hai
Liu, Fangyan
Han, Yu
Wang, Zixing
Chen, Ningjun
Yan, Cheng
Deng, Wen
Deng, Weili
Yang, Weiqing
description Conducting polymer hydrogels (CPHs) advantageously synergize the features of both hydrogels and conducting polymers and have gained ground in various applications such as energy storage devices, catalysis and sensors. Conventional synthesis of CPHs usually couples with introducing of non-conductive polymer frameworks or chemical oxidative initiators, which will inevitably lead to degraded electrochemical performance and long rinse time. Here, we report an electrochemical polymerization method free of frameworks and initiators to build three-dimensional (3D) polyaniline/phytic acid supramolecular hydrogel. This CPH provides high conductivity of 0.43 S cm−1 and improved electrode interfaces between electronic transporting phase and ionic transporting phase. As a result, the CPHs exhibit large areal capacitance of 561.6 mF cm−2 and specific capacitance of 311.3 F g−1. Flexible solid-state micro-supercapacitors (MSCs) based on this CPHs deliver high areal capacitance of 135.9 mF cm−2 and considerable integratable potential via tandem and parallel connection. Cyclic stability is demonstrated by 10,000 galvanostatic charge/discharge cycles with 76% capacitance retention. Besides, electrochemical performance of this device can be maintained under different mechanical loadings such as bending and twisting, which makes it a promising power supply candidate for future wearable electronics and on-chip integrated circuit. [Display omitted]
doi_str_mv 10.1016/j.electacta.2019.01.165
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2195862907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468619301926</els_id><sourcerecordid>2195862907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-ee3fcbf0799a844bdc4cf505859ec5db34d23528aec9f033d507a43183ad6f163</originalsourceid><addsrcrecordid>eNqFkEtr3DAUhUVJIJM0vyGCru1eWX4uQ8ijEMgmXQtZuspokEfulV0y5M9Hw4RuC4K7Od9B52PsRkApQLQ_dyUGNIvOr6xADCWIUrTNN7YRfScL2TfDGdsACFnUbd9esMuUdgDQtR1s2Mf9EaZotjh5o0M48HH1wfr9G1-2hFhYP-E--bjXgad1Jj3FjKxBE59jOExIfHuwFN8wcBeJu4DvfgzIUwzeFmnRC_LcTbHIOJLRszZ-iZS-s3OnQ8Lrr3vFfj_cv949Fc8vj7_ubp8LI_tqKRClM6ODbhh0X9ejNbVxDTR5GJrGjrK2lWyqXqMZHEhpG-h0LUUvtW2daOUV-3HqnSn-WTEtahdXynuSqsTQ9G01QJdT3SmVf5oSoVMz-UnTQQlQR9Nqp_6ZVkfTCoTKpjN5eyIxj_jrkVQyHvcGraecVzb6_3Z8AiK7j_c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2195862907</pqid></control><display><type>article</type><title>Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chu, Xiang ; Huang, Haichao ; Zhang, Haitao ; Zhang, Hepeng ; Gu, Bingni ; Su, Hai ; Liu, Fangyan ; Han, Yu ; Wang, Zixing ; Chen, Ningjun ; Yan, Cheng ; Deng, Wen ; Deng, Weili ; Yang, Weiqing</creator><creatorcontrib>Chu, Xiang ; Huang, Haichao ; Zhang, Haitao ; Zhang, Hepeng ; Gu, Bingni ; Su, Hai ; Liu, Fangyan ; Han, Yu ; Wang, Zixing ; Chen, Ningjun ; Yan, Cheng ; Deng, Wen ; Deng, Weili ; Yang, Weiqing</creatorcontrib><description>Conducting polymer hydrogels (CPHs) advantageously synergize the features of both hydrogels and conducting polymers and have gained ground in various applications such as energy storage devices, catalysis and sensors. Conventional synthesis of CPHs usually couples with introducing of non-conductive polymer frameworks or chemical oxidative initiators, which will inevitably lead to degraded electrochemical performance and long rinse time. Here, we report an electrochemical polymerization method free of frameworks and initiators to build three-dimensional (3D) polyaniline/phytic acid supramolecular hydrogel. This CPH provides high conductivity of 0.43 S cm−1 and improved electrode interfaces between electronic transporting phase and ionic transporting phase. As a result, the CPHs exhibit large areal capacitance of 561.6 mF cm−2 and specific capacitance of 311.3 F g−1. Flexible solid-state micro-supercapacitors (MSCs) based on this CPHs deliver high areal capacitance of 135.9 mF cm−2 and considerable integratable potential via tandem and parallel connection. Cyclic stability is demonstrated by 10,000 galvanostatic charge/discharge cycles with 76% capacitance retention. Besides, electrochemical performance of this device can be maintained under different mechanical loadings such as bending and twisting, which makes it a promising power supply candidate for future wearable electronics and on-chip integrated circuit. [Display omitted]</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2019.01.165</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Bending machines ; Capacitance ; Catalysis ; Chemical synthesis ; Conducting polymer hydrogel ; Conducting polymers ; Electrochemical analysis ; Electrochemical polymerization ; Energy storage ; Hydrogels ; Initiators ; Integrated circuits ; Micro-supercapacitor ; Organic chemistry ; Performance degradation ; Phytic acid ; Polyaniline ; Polyanilines ; Polymers ; Power supplies ; Solid state ; Supercapacitors ; Twisting</subject><ispartof>Electrochimica acta, 2019-04, Vol.301, p.136-144</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-ee3fcbf0799a844bdc4cf505859ec5db34d23528aec9f033d507a43183ad6f163</citedby><cites>FETCH-LOGICAL-c382t-ee3fcbf0799a844bdc4cf505859ec5db34d23528aec9f033d507a43183ad6f163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2019.01.165$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Chu, Xiang</creatorcontrib><creatorcontrib>Huang, Haichao</creatorcontrib><creatorcontrib>Zhang, Haitao</creatorcontrib><creatorcontrib>Zhang, Hepeng</creatorcontrib><creatorcontrib>Gu, Bingni</creatorcontrib><creatorcontrib>Su, Hai</creatorcontrib><creatorcontrib>Liu, Fangyan</creatorcontrib><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Wang, Zixing</creatorcontrib><creatorcontrib>Chen, Ningjun</creatorcontrib><creatorcontrib>Yan, Cheng</creatorcontrib><creatorcontrib>Deng, Wen</creatorcontrib><creatorcontrib>Deng, Weili</creatorcontrib><creatorcontrib>Yang, Weiqing</creatorcontrib><title>Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors</title><title>Electrochimica acta</title><description>Conducting polymer hydrogels (CPHs) advantageously synergize the features of both hydrogels and conducting polymers and have gained ground in various applications such as energy storage devices, catalysis and sensors. Conventional synthesis of CPHs usually couples with introducing of non-conductive polymer frameworks or chemical oxidative initiators, which will inevitably lead to degraded electrochemical performance and long rinse time. Here, we report an electrochemical polymerization method free of frameworks and initiators to build three-dimensional (3D) polyaniline/phytic acid supramolecular hydrogel. This CPH provides high conductivity of 0.43 S cm−1 and improved electrode interfaces between electronic transporting phase and ionic transporting phase. As a result, the CPHs exhibit large areal capacitance of 561.6 mF cm−2 and specific capacitance of 311.3 F g−1. Flexible solid-state micro-supercapacitors (MSCs) based on this CPHs deliver high areal capacitance of 135.9 mF cm−2 and considerable integratable potential via tandem and parallel connection. Cyclic stability is demonstrated by 10,000 galvanostatic charge/discharge cycles with 76% capacitance retention. Besides, electrochemical performance of this device can be maintained under different mechanical loadings such as bending and twisting, which makes it a promising power supply candidate for future wearable electronics and on-chip integrated circuit. [Display omitted]</description><subject>Bending machines</subject><subject>Capacitance</subject><subject>Catalysis</subject><subject>Chemical synthesis</subject><subject>Conducting polymer hydrogel</subject><subject>Conducting polymers</subject><subject>Electrochemical analysis</subject><subject>Electrochemical polymerization</subject><subject>Energy storage</subject><subject>Hydrogels</subject><subject>Initiators</subject><subject>Integrated circuits</subject><subject>Micro-supercapacitor</subject><subject>Organic chemistry</subject><subject>Performance degradation</subject><subject>Phytic acid</subject><subject>Polyaniline</subject><subject>Polyanilines</subject><subject>Polymers</subject><subject>Power supplies</subject><subject>Solid state</subject><subject>Supercapacitors</subject><subject>Twisting</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtr3DAUhUVJIJM0vyGCru1eWX4uQ8ijEMgmXQtZuspokEfulV0y5M9Hw4RuC4K7Od9B52PsRkApQLQ_dyUGNIvOr6xADCWIUrTNN7YRfScL2TfDGdsACFnUbd9esMuUdgDQtR1s2Mf9EaZotjh5o0M48HH1wfr9G1-2hFhYP-E--bjXgad1Jj3FjKxBE59jOExIfHuwFN8wcBeJu4DvfgzIUwzeFmnRC_LcTbHIOJLRszZ-iZS-s3OnQ8Lrr3vFfj_cv949Fc8vj7_ubp8LI_tqKRClM6ODbhh0X9ejNbVxDTR5GJrGjrK2lWyqXqMZHEhpG-h0LUUvtW2daOUV-3HqnSn-WTEtahdXynuSqsTQ9G01QJdT3SmVf5oSoVMz-UnTQQlQR9Nqp_6ZVkfTCoTKpjN5eyIxj_jrkVQyHvcGraecVzb6_3Z8AiK7j_c</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Chu, Xiang</creator><creator>Huang, Haichao</creator><creator>Zhang, Haitao</creator><creator>Zhang, Hepeng</creator><creator>Gu, Bingni</creator><creator>Su, Hai</creator><creator>Liu, Fangyan</creator><creator>Han, Yu</creator><creator>Wang, Zixing</creator><creator>Chen, Ningjun</creator><creator>Yan, Cheng</creator><creator>Deng, Wen</creator><creator>Deng, Weili</creator><creator>Yang, Weiqing</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190401</creationdate><title>Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors</title><author>Chu, Xiang ; Huang, Haichao ; Zhang, Haitao ; Zhang, Hepeng ; Gu, Bingni ; Su, Hai ; Liu, Fangyan ; Han, Yu ; Wang, Zixing ; Chen, Ningjun ; Yan, Cheng ; Deng, Wen ; Deng, Weili ; Yang, Weiqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-ee3fcbf0799a844bdc4cf505859ec5db34d23528aec9f033d507a43183ad6f163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bending machines</topic><topic>Capacitance</topic><topic>Catalysis</topic><topic>Chemical synthesis</topic><topic>Conducting polymer hydrogel</topic><topic>Conducting polymers</topic><topic>Electrochemical analysis</topic><topic>Electrochemical polymerization</topic><topic>Energy storage</topic><topic>Hydrogels</topic><topic>Initiators</topic><topic>Integrated circuits</topic><topic>Micro-supercapacitor</topic><topic>Organic chemistry</topic><topic>Performance degradation</topic><topic>Phytic acid</topic><topic>Polyaniline</topic><topic>Polyanilines</topic><topic>Polymers</topic><topic>Power supplies</topic><topic>Solid state</topic><topic>Supercapacitors</topic><topic>Twisting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Xiang</creatorcontrib><creatorcontrib>Huang, Haichao</creatorcontrib><creatorcontrib>Zhang, Haitao</creatorcontrib><creatorcontrib>Zhang, Hepeng</creatorcontrib><creatorcontrib>Gu, Bingni</creatorcontrib><creatorcontrib>Su, Hai</creatorcontrib><creatorcontrib>Liu, Fangyan</creatorcontrib><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Wang, Zixing</creatorcontrib><creatorcontrib>Chen, Ningjun</creatorcontrib><creatorcontrib>Yan, Cheng</creatorcontrib><creatorcontrib>Deng, Wen</creatorcontrib><creatorcontrib>Deng, Weili</creatorcontrib><creatorcontrib>Yang, Weiqing</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Xiang</au><au>Huang, Haichao</au><au>Zhang, Haitao</au><au>Zhang, Hepeng</au><au>Gu, Bingni</au><au>Su, Hai</au><au>Liu, Fangyan</au><au>Han, Yu</au><au>Wang, Zixing</au><au>Chen, Ningjun</au><au>Yan, Cheng</au><au>Deng, Wen</au><au>Deng, Weili</au><au>Yang, Weiqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors</atitle><jtitle>Electrochimica acta</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>301</volume><spage>136</spage><epage>144</epage><pages>136-144</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Conducting polymer hydrogels (CPHs) advantageously synergize the features of both hydrogels and conducting polymers and have gained ground in various applications such as energy storage devices, catalysis and sensors. Conventional synthesis of CPHs usually couples with introducing of non-conductive polymer frameworks or chemical oxidative initiators, which will inevitably lead to degraded electrochemical performance and long rinse time. Here, we report an electrochemical polymerization method free of frameworks and initiators to build three-dimensional (3D) polyaniline/phytic acid supramolecular hydrogel. This CPH provides high conductivity of 0.43 S cm−1 and improved electrode interfaces between electronic transporting phase and ionic transporting phase. As a result, the CPHs exhibit large areal capacitance of 561.6 mF cm−2 and specific capacitance of 311.3 F g−1. Flexible solid-state micro-supercapacitors (MSCs) based on this CPHs deliver high areal capacitance of 135.9 mF cm−2 and considerable integratable potential via tandem and parallel connection. Cyclic stability is demonstrated by 10,000 galvanostatic charge/discharge cycles with 76% capacitance retention. Besides, electrochemical performance of this device can be maintained under different mechanical loadings such as bending and twisting, which makes it a promising power supply candidate for future wearable electronics and on-chip integrated circuit. [Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2019.01.165</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2019-04, Vol.301, p.136-144
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2195862907
source ScienceDirect Journals (5 years ago - present)
subjects Bending machines
Capacitance
Catalysis
Chemical synthesis
Conducting polymer hydrogel
Conducting polymers
Electrochemical analysis
Electrochemical polymerization
Energy storage
Hydrogels
Initiators
Integrated circuits
Micro-supercapacitor
Organic chemistry
Performance degradation
Phytic acid
Polyaniline
Polyanilines
Polymers
Power supplies
Solid state
Supercapacitors
Twisting
title Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemically%20building%20three-dimensional%20supramolecular%20polymer%20hydrogel%20for%20flexible%20solid-state%20micro-supercapacitors&rft.jtitle=Electrochimica%20acta&rft.au=Chu,%20Xiang&rft.date=2019-04-01&rft.volume=301&rft.spage=136&rft.epage=144&rft.pages=136-144&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2019.01.165&rft_dat=%3Cproquest_cross%3E2195862907%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2195862907&rft_id=info:pmid/&rft_els_id=S0013468619301926&rfr_iscdi=true