Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors
Conducting polymer hydrogels (CPHs) advantageously synergize the features of both hydrogels and conducting polymers and have gained ground in various applications such as energy storage devices, catalysis and sensors. Conventional synthesis of CPHs usually couples with introducing of non-conductive...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2019-04, Vol.301, p.136-144 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 144 |
---|---|
container_issue | |
container_start_page | 136 |
container_title | Electrochimica acta |
container_volume | 301 |
creator | Chu, Xiang Huang, Haichao Zhang, Haitao Zhang, Hepeng Gu, Bingni Su, Hai Liu, Fangyan Han, Yu Wang, Zixing Chen, Ningjun Yan, Cheng Deng, Wen Deng, Weili Yang, Weiqing |
description | Conducting polymer hydrogels (CPHs) advantageously synergize the features of both hydrogels and conducting polymers and have gained ground in various applications such as energy storage devices, catalysis and sensors. Conventional synthesis of CPHs usually couples with introducing of non-conductive polymer frameworks or chemical oxidative initiators, which will inevitably lead to degraded electrochemical performance and long rinse time. Here, we report an electrochemical polymerization method free of frameworks and initiators to build three-dimensional (3D) polyaniline/phytic acid supramolecular hydrogel. This CPH provides high conductivity of 0.43 S cm−1 and improved electrode interfaces between electronic transporting phase and ionic transporting phase. As a result, the CPHs exhibit large areal capacitance of 561.6 mF cm−2 and specific capacitance of 311.3 F g−1. Flexible solid-state micro-supercapacitors (MSCs) based on this CPHs deliver high areal capacitance of 135.9 mF cm−2 and considerable integratable potential via tandem and parallel connection. Cyclic stability is demonstrated by 10,000 galvanostatic charge/discharge cycles with 76% capacitance retention. Besides, electrochemical performance of this device can be maintained under different mechanical loadings such as bending and twisting, which makes it a promising power supply candidate for future wearable electronics and on-chip integrated circuit.
[Display omitted] |
doi_str_mv | 10.1016/j.electacta.2019.01.165 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2195862907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468619301926</els_id><sourcerecordid>2195862907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-ee3fcbf0799a844bdc4cf505859ec5db34d23528aec9f033d507a43183ad6f163</originalsourceid><addsrcrecordid>eNqFkEtr3DAUhUVJIJM0vyGCru1eWX4uQ8ijEMgmXQtZuspokEfulV0y5M9Hw4RuC4K7Od9B52PsRkApQLQ_dyUGNIvOr6xADCWIUrTNN7YRfScL2TfDGdsACFnUbd9esMuUdgDQtR1s2Mf9EaZotjh5o0M48HH1wfr9G1-2hFhYP-E--bjXgad1Jj3FjKxBE59jOExIfHuwFN8wcBeJu4DvfgzIUwzeFmnRC_LcTbHIOJLRszZ-iZS-s3OnQ8Lrr3vFfj_cv949Fc8vj7_ubp8LI_tqKRClM6ODbhh0X9ejNbVxDTR5GJrGjrK2lWyqXqMZHEhpG-h0LUUvtW2daOUV-3HqnSn-WTEtahdXynuSqsTQ9G01QJdT3SmVf5oSoVMz-UnTQQlQR9Nqp_6ZVkfTCoTKpjN5eyIxj_jrkVQyHvcGraecVzb6_3Z8AiK7j_c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2195862907</pqid></control><display><type>article</type><title>Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chu, Xiang ; Huang, Haichao ; Zhang, Haitao ; Zhang, Hepeng ; Gu, Bingni ; Su, Hai ; Liu, Fangyan ; Han, Yu ; Wang, Zixing ; Chen, Ningjun ; Yan, Cheng ; Deng, Wen ; Deng, Weili ; Yang, Weiqing</creator><creatorcontrib>Chu, Xiang ; Huang, Haichao ; Zhang, Haitao ; Zhang, Hepeng ; Gu, Bingni ; Su, Hai ; Liu, Fangyan ; Han, Yu ; Wang, Zixing ; Chen, Ningjun ; Yan, Cheng ; Deng, Wen ; Deng, Weili ; Yang, Weiqing</creatorcontrib><description>Conducting polymer hydrogels (CPHs) advantageously synergize the features of both hydrogels and conducting polymers and have gained ground in various applications such as energy storage devices, catalysis and sensors. Conventional synthesis of CPHs usually couples with introducing of non-conductive polymer frameworks or chemical oxidative initiators, which will inevitably lead to degraded electrochemical performance and long rinse time. Here, we report an electrochemical polymerization method free of frameworks and initiators to build three-dimensional (3D) polyaniline/phytic acid supramolecular hydrogel. This CPH provides high conductivity of 0.43 S cm−1 and improved electrode interfaces between electronic transporting phase and ionic transporting phase. As a result, the CPHs exhibit large areal capacitance of 561.6 mF cm−2 and specific capacitance of 311.3 F g−1. Flexible solid-state micro-supercapacitors (MSCs) based on this CPHs deliver high areal capacitance of 135.9 mF cm−2 and considerable integratable potential via tandem and parallel connection. Cyclic stability is demonstrated by 10,000 galvanostatic charge/discharge cycles with 76% capacitance retention. Besides, electrochemical performance of this device can be maintained under different mechanical loadings such as bending and twisting, which makes it a promising power supply candidate for future wearable electronics and on-chip integrated circuit.
[Display omitted]</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2019.01.165</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Bending machines ; Capacitance ; Catalysis ; Chemical synthesis ; Conducting polymer hydrogel ; Conducting polymers ; Electrochemical analysis ; Electrochemical polymerization ; Energy storage ; Hydrogels ; Initiators ; Integrated circuits ; Micro-supercapacitor ; Organic chemistry ; Performance degradation ; Phytic acid ; Polyaniline ; Polyanilines ; Polymers ; Power supplies ; Solid state ; Supercapacitors ; Twisting</subject><ispartof>Electrochimica acta, 2019-04, Vol.301, p.136-144</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-ee3fcbf0799a844bdc4cf505859ec5db34d23528aec9f033d507a43183ad6f163</citedby><cites>FETCH-LOGICAL-c382t-ee3fcbf0799a844bdc4cf505859ec5db34d23528aec9f033d507a43183ad6f163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2019.01.165$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Chu, Xiang</creatorcontrib><creatorcontrib>Huang, Haichao</creatorcontrib><creatorcontrib>Zhang, Haitao</creatorcontrib><creatorcontrib>Zhang, Hepeng</creatorcontrib><creatorcontrib>Gu, Bingni</creatorcontrib><creatorcontrib>Su, Hai</creatorcontrib><creatorcontrib>Liu, Fangyan</creatorcontrib><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Wang, Zixing</creatorcontrib><creatorcontrib>Chen, Ningjun</creatorcontrib><creatorcontrib>Yan, Cheng</creatorcontrib><creatorcontrib>Deng, Wen</creatorcontrib><creatorcontrib>Deng, Weili</creatorcontrib><creatorcontrib>Yang, Weiqing</creatorcontrib><title>Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors</title><title>Electrochimica acta</title><description>Conducting polymer hydrogels (CPHs) advantageously synergize the features of both hydrogels and conducting polymers and have gained ground in various applications such as energy storage devices, catalysis and sensors. Conventional synthesis of CPHs usually couples with introducing of non-conductive polymer frameworks or chemical oxidative initiators, which will inevitably lead to degraded electrochemical performance and long rinse time. Here, we report an electrochemical polymerization method free of frameworks and initiators to build three-dimensional (3D) polyaniline/phytic acid supramolecular hydrogel. This CPH provides high conductivity of 0.43 S cm−1 and improved electrode interfaces between electronic transporting phase and ionic transporting phase. As a result, the CPHs exhibit large areal capacitance of 561.6 mF cm−2 and specific capacitance of 311.3 F g−1. Flexible solid-state micro-supercapacitors (MSCs) based on this CPHs deliver high areal capacitance of 135.9 mF cm−2 and considerable integratable potential via tandem and parallel connection. Cyclic stability is demonstrated by 10,000 galvanostatic charge/discharge cycles with 76% capacitance retention. Besides, electrochemical performance of this device can be maintained under different mechanical loadings such as bending and twisting, which makes it a promising power supply candidate for future wearable electronics and on-chip integrated circuit.
[Display omitted]</description><subject>Bending machines</subject><subject>Capacitance</subject><subject>Catalysis</subject><subject>Chemical synthesis</subject><subject>Conducting polymer hydrogel</subject><subject>Conducting polymers</subject><subject>Electrochemical analysis</subject><subject>Electrochemical polymerization</subject><subject>Energy storage</subject><subject>Hydrogels</subject><subject>Initiators</subject><subject>Integrated circuits</subject><subject>Micro-supercapacitor</subject><subject>Organic chemistry</subject><subject>Performance degradation</subject><subject>Phytic acid</subject><subject>Polyaniline</subject><subject>Polyanilines</subject><subject>Polymers</subject><subject>Power supplies</subject><subject>Solid state</subject><subject>Supercapacitors</subject><subject>Twisting</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtr3DAUhUVJIJM0vyGCru1eWX4uQ8ijEMgmXQtZuspokEfulV0y5M9Hw4RuC4K7Od9B52PsRkApQLQ_dyUGNIvOr6xADCWIUrTNN7YRfScL2TfDGdsACFnUbd9esMuUdgDQtR1s2Mf9EaZotjh5o0M48HH1wfr9G1-2hFhYP-E--bjXgad1Jj3FjKxBE59jOExIfHuwFN8wcBeJu4DvfgzIUwzeFmnRC_LcTbHIOJLRszZ-iZS-s3OnQ8Lrr3vFfj_cv949Fc8vj7_ubp8LI_tqKRClM6ODbhh0X9ejNbVxDTR5GJrGjrK2lWyqXqMZHEhpG-h0LUUvtW2daOUV-3HqnSn-WTEtahdXynuSqsTQ9G01QJdT3SmVf5oSoVMz-UnTQQlQR9Nqp_6ZVkfTCoTKpjN5eyIxj_jrkVQyHvcGraecVzb6_3Z8AiK7j_c</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Chu, Xiang</creator><creator>Huang, Haichao</creator><creator>Zhang, Haitao</creator><creator>Zhang, Hepeng</creator><creator>Gu, Bingni</creator><creator>Su, Hai</creator><creator>Liu, Fangyan</creator><creator>Han, Yu</creator><creator>Wang, Zixing</creator><creator>Chen, Ningjun</creator><creator>Yan, Cheng</creator><creator>Deng, Wen</creator><creator>Deng, Weili</creator><creator>Yang, Weiqing</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190401</creationdate><title>Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors</title><author>Chu, Xiang ; Huang, Haichao ; Zhang, Haitao ; Zhang, Hepeng ; Gu, Bingni ; Su, Hai ; Liu, Fangyan ; Han, Yu ; Wang, Zixing ; Chen, Ningjun ; Yan, Cheng ; Deng, Wen ; Deng, Weili ; Yang, Weiqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-ee3fcbf0799a844bdc4cf505859ec5db34d23528aec9f033d507a43183ad6f163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bending machines</topic><topic>Capacitance</topic><topic>Catalysis</topic><topic>Chemical synthesis</topic><topic>Conducting polymer hydrogel</topic><topic>Conducting polymers</topic><topic>Electrochemical analysis</topic><topic>Electrochemical polymerization</topic><topic>Energy storage</topic><topic>Hydrogels</topic><topic>Initiators</topic><topic>Integrated circuits</topic><topic>Micro-supercapacitor</topic><topic>Organic chemistry</topic><topic>Performance degradation</topic><topic>Phytic acid</topic><topic>Polyaniline</topic><topic>Polyanilines</topic><topic>Polymers</topic><topic>Power supplies</topic><topic>Solid state</topic><topic>Supercapacitors</topic><topic>Twisting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Xiang</creatorcontrib><creatorcontrib>Huang, Haichao</creatorcontrib><creatorcontrib>Zhang, Haitao</creatorcontrib><creatorcontrib>Zhang, Hepeng</creatorcontrib><creatorcontrib>Gu, Bingni</creatorcontrib><creatorcontrib>Su, Hai</creatorcontrib><creatorcontrib>Liu, Fangyan</creatorcontrib><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Wang, Zixing</creatorcontrib><creatorcontrib>Chen, Ningjun</creatorcontrib><creatorcontrib>Yan, Cheng</creatorcontrib><creatorcontrib>Deng, Wen</creatorcontrib><creatorcontrib>Deng, Weili</creatorcontrib><creatorcontrib>Yang, Weiqing</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Xiang</au><au>Huang, Haichao</au><au>Zhang, Haitao</au><au>Zhang, Hepeng</au><au>Gu, Bingni</au><au>Su, Hai</au><au>Liu, Fangyan</au><au>Han, Yu</au><au>Wang, Zixing</au><au>Chen, Ningjun</au><au>Yan, Cheng</au><au>Deng, Wen</au><au>Deng, Weili</au><au>Yang, Weiqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors</atitle><jtitle>Electrochimica acta</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>301</volume><spage>136</spage><epage>144</epage><pages>136-144</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Conducting polymer hydrogels (CPHs) advantageously synergize the features of both hydrogels and conducting polymers and have gained ground in various applications such as energy storage devices, catalysis and sensors. Conventional synthesis of CPHs usually couples with introducing of non-conductive polymer frameworks or chemical oxidative initiators, which will inevitably lead to degraded electrochemical performance and long rinse time. Here, we report an electrochemical polymerization method free of frameworks and initiators to build three-dimensional (3D) polyaniline/phytic acid supramolecular hydrogel. This CPH provides high conductivity of 0.43 S cm−1 and improved electrode interfaces between electronic transporting phase and ionic transporting phase. As a result, the CPHs exhibit large areal capacitance of 561.6 mF cm−2 and specific capacitance of 311.3 F g−1. Flexible solid-state micro-supercapacitors (MSCs) based on this CPHs deliver high areal capacitance of 135.9 mF cm−2 and considerable integratable potential via tandem and parallel connection. Cyclic stability is demonstrated by 10,000 galvanostatic charge/discharge cycles with 76% capacitance retention. Besides, electrochemical performance of this device can be maintained under different mechanical loadings such as bending and twisting, which makes it a promising power supply candidate for future wearable electronics and on-chip integrated circuit.
[Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2019.01.165</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2019-04, Vol.301, p.136-144 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_journals_2195862907 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Bending machines Capacitance Catalysis Chemical synthesis Conducting polymer hydrogel Conducting polymers Electrochemical analysis Electrochemical polymerization Energy storage Hydrogels Initiators Integrated circuits Micro-supercapacitor Organic chemistry Performance degradation Phytic acid Polyaniline Polyanilines Polymers Power supplies Solid state Supercapacitors Twisting |
title | Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemically%20building%20three-dimensional%20supramolecular%20polymer%20hydrogel%20for%20flexible%20solid-state%20micro-supercapacitors&rft.jtitle=Electrochimica%20acta&rft.au=Chu,%20Xiang&rft.date=2019-04-01&rft.volume=301&rft.spage=136&rft.epage=144&rft.pages=136-144&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2019.01.165&rft_dat=%3Cproquest_cross%3E2195862907%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2195862907&rft_id=info:pmid/&rft_els_id=S0013468619301926&rfr_iscdi=true |