A gradient weighted extended finite element method (GW-XFEM) for fracture mechanics
In this study, a gradient weighted extended finite element method (GW-XFEM) is presented for the analysis of fracture problems. For this method, the domain discretization is the same as the standard XFEM. However, the gradient field is constructed by considering the influences of the element itself...
Gespeichert in:
Veröffentlicht in: | Acta mechanica 2019-07, Vol.230 (7), p.2385-2398 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2398 |
---|---|
container_issue | 7 |
container_start_page | 2385 |
container_title | Acta mechanica |
container_volume | 230 |
creator | Feng, S. Z. Bordas, S. P. A. Han, X. Wang, G. Li, Z. X. |
description | In this study, a gradient weighted extended finite element method (GW-XFEM) is presented for the analysis of fracture problems. For this method, the domain discretization is the same as the standard XFEM. However, the gradient field is constructed by considering the influences of the element itself and its adjacent elements. Based on the Shepard interpolation, the weighted strain filed can be obtained, which will be utilized to construct the discretized system equations. The validity of the presented method is fully investigated through several numerical examples. From these results, it is shown that compared with standard XFEM, the presented method can achieve much better accuracy, efficiency and higher convergence, when dealing with fracture analysis. |
doi_str_mv | 10.1007/s00707-019-02386-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2195735538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2195735538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-15c81f88b8dc23b0292f805651d44a2a0f6077a54598a7873a9116020aba0f5d3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwte9BCdJJtNciylrULFg4reQrqbtFva3Zpk0f57U1fw5mVmHu9j4CF0SeCWAIi7kAYIDERhoEwWeH-EBqRIsFBMHKMBABDMlYBTdBbCOiEqcjJAz6Ns6U1V2yZmn7ZerqKtMvsVbVOlw9VNHW1mN3Z7EGxtXLVVdj17w-_TyeNN5lqfOW_K2Hmb2HJlmroM5-jEmU2wF797iF6nk5fxPZ4_zR7GozkuGVERE15K4qRcyKqkbAFUUSeBF5xUeW6oAVeAEIbnXEkjpGBGEVIABbNIHK_YEF31uTvffnQ2RL1uO9-kl5oSxQXjnMmkor2q9G0I3jq98_XW-L0moA_l6b48ncrTP-XpfTKx3hSSuFla_xf9j-sbJyhwwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2195735538</pqid></control><display><type>article</type><title>A gradient weighted extended finite element method (GW-XFEM) for fracture mechanics</title><source>Springer Nature - Complete Springer Journals</source><creator>Feng, S. Z. ; Bordas, S. P. A. ; Han, X. ; Wang, G. ; Li, Z. X.</creator><creatorcontrib>Feng, S. Z. ; Bordas, S. P. A. ; Han, X. ; Wang, G. ; Li, Z. X.</creatorcontrib><description>In this study, a gradient weighted extended finite element method (GW-XFEM) is presented for the analysis of fracture problems. For this method, the domain discretization is the same as the standard XFEM. However, the gradient field is constructed by considering the influences of the element itself and its adjacent elements. Based on the Shepard interpolation, the weighted strain filed can be obtained, which will be utilized to construct the discretized system equations. The validity of the presented method is fully investigated through several numerical examples. From these results, it is shown that compared with standard XFEM, the presented method can achieve much better accuracy, efficiency and higher convergence, when dealing with fracture analysis.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-019-02386-y</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Classical and Continuum Physics ; Control ; Discretization ; Dynamical Systems ; Engineering ; Engineering Thermodynamics ; Finite element analysis ; Finite element method ; Fracture mechanics ; Heat and Mass Transfer ; Interpolation ; Mathematical analysis ; Nonlinear programming ; Original Paper ; Solid Mechanics ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2019-07, Vol.230 (7), p.2385-2398</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2019</rights><rights>Acta Mechanica is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-15c81f88b8dc23b0292f805651d44a2a0f6077a54598a7873a9116020aba0f5d3</citedby><cites>FETCH-LOGICAL-c319t-15c81f88b8dc23b0292f805651d44a2a0f6077a54598a7873a9116020aba0f5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-019-02386-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-019-02386-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Feng, S. Z.</creatorcontrib><creatorcontrib>Bordas, S. P. A.</creatorcontrib><creatorcontrib>Han, X.</creatorcontrib><creatorcontrib>Wang, G.</creatorcontrib><creatorcontrib>Li, Z. X.</creatorcontrib><title>A gradient weighted extended finite element method (GW-XFEM) for fracture mechanics</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>In this study, a gradient weighted extended finite element method (GW-XFEM) is presented for the analysis of fracture problems. For this method, the domain discretization is the same as the standard XFEM. However, the gradient field is constructed by considering the influences of the element itself and its adjacent elements. Based on the Shepard interpolation, the weighted strain filed can be obtained, which will be utilized to construct the discretized system equations. The validity of the presented method is fully investigated through several numerical examples. From these results, it is shown that compared with standard XFEM, the presented method can achieve much better accuracy, efficiency and higher convergence, when dealing with fracture analysis.</description><subject>Classical and Continuum Physics</subject><subject>Control</subject><subject>Discretization</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Heat and Mass Transfer</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Nonlinear programming</subject><subject>Original Paper</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UE1LAzEQDaJgrf4BTwte9BCdJJtNciylrULFg4reQrqbtFva3Zpk0f57U1fw5mVmHu9j4CF0SeCWAIi7kAYIDERhoEwWeH-EBqRIsFBMHKMBABDMlYBTdBbCOiEqcjJAz6Ns6U1V2yZmn7ZerqKtMvsVbVOlw9VNHW1mN3Z7EGxtXLVVdj17w-_TyeNN5lqfOW_K2Hmb2HJlmroM5-jEmU2wF797iF6nk5fxPZ4_zR7GozkuGVERE15K4qRcyKqkbAFUUSeBF5xUeW6oAVeAEIbnXEkjpGBGEVIABbNIHK_YEF31uTvffnQ2RL1uO9-kl5oSxQXjnMmkor2q9G0I3jq98_XW-L0moA_l6b48ncrTP-XpfTKx3hSSuFla_xf9j-sbJyhwwQ</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Feng, S. Z.</creator><creator>Bordas, S. P. A.</creator><creator>Han, X.</creator><creator>Wang, G.</creator><creator>Li, Z. X.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20190701</creationdate><title>A gradient weighted extended finite element method (GW-XFEM) for fracture mechanics</title><author>Feng, S. Z. ; Bordas, S. P. A. ; Han, X. ; Wang, G. ; Li, Z. X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-15c81f88b8dc23b0292f805651d44a2a0f6077a54598a7873a9116020aba0f5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical and Continuum Physics</topic><topic>Control</topic><topic>Discretization</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Heat and Mass Transfer</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Nonlinear programming</topic><topic>Original Paper</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, S. Z.</creatorcontrib><creatorcontrib>Bordas, S. P. A.</creatorcontrib><creatorcontrib>Han, X.</creatorcontrib><creatorcontrib>Wang, G.</creatorcontrib><creatorcontrib>Li, Z. X.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, S. Z.</au><au>Bordas, S. P. A.</au><au>Han, X.</au><au>Wang, G.</au><au>Li, Z. X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A gradient weighted extended finite element method (GW-XFEM) for fracture mechanics</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>230</volume><issue>7</issue><spage>2385</spage><epage>2398</epage><pages>2385-2398</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>In this study, a gradient weighted extended finite element method (GW-XFEM) is presented for the analysis of fracture problems. For this method, the domain discretization is the same as the standard XFEM. However, the gradient field is constructed by considering the influences of the element itself and its adjacent elements. Based on the Shepard interpolation, the weighted strain filed can be obtained, which will be utilized to construct the discretized system equations. The validity of the presented method is fully investigated through several numerical examples. From these results, it is shown that compared with standard XFEM, the presented method can achieve much better accuracy, efficiency and higher convergence, when dealing with fracture analysis.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-019-02386-y</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 2019-07, Vol.230 (7), p.2385-2398 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_proquest_journals_2195735538 |
source | Springer Nature - Complete Springer Journals |
subjects | Classical and Continuum Physics Control Discretization Dynamical Systems Engineering Engineering Thermodynamics Finite element analysis Finite element method Fracture mechanics Heat and Mass Transfer Interpolation Mathematical analysis Nonlinear programming Original Paper Solid Mechanics Theoretical and Applied Mechanics Vibration |
title | A gradient weighted extended finite element method (GW-XFEM) for fracture mechanics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20gradient%20weighted%20extended%20finite%20element%20method%20(GW-XFEM)%20for%20fracture%20mechanics&rft.jtitle=Acta%20mechanica&rft.au=Feng,%20S.%20Z.&rft.date=2019-07-01&rft.volume=230&rft.issue=7&rft.spage=2385&rft.epage=2398&rft.pages=2385-2398&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-019-02386-y&rft_dat=%3Cproquest_cross%3E2195735538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2195735538&rft_id=info:pmid/&rfr_iscdi=true |