A gradient weighted extended finite element method (GW-XFEM) for fracture mechanics

In this study, a gradient weighted extended finite element method (GW-XFEM) is presented for the analysis of fracture problems. For this method, the domain discretization is the same as the standard XFEM. However, the gradient field is constructed by considering the influences of the element itself...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2019-07, Vol.230 (7), p.2385-2398
Hauptverfasser: Feng, S. Z., Bordas, S. P. A., Han, X., Wang, G., Li, Z. X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2398
container_issue 7
container_start_page 2385
container_title Acta mechanica
container_volume 230
creator Feng, S. Z.
Bordas, S. P. A.
Han, X.
Wang, G.
Li, Z. X.
description In this study, a gradient weighted extended finite element method (GW-XFEM) is presented for the analysis of fracture problems. For this method, the domain discretization is the same as the standard XFEM. However, the gradient field is constructed by considering the influences of the element itself and its adjacent elements. Based on the Shepard interpolation, the weighted strain filed can be obtained, which will be utilized to construct the discretized system equations. The validity of the presented method is fully investigated through several numerical examples. From these results, it is shown that compared with standard XFEM, the presented method can achieve much better accuracy, efficiency and higher convergence, when dealing with fracture analysis.
doi_str_mv 10.1007/s00707-019-02386-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2195735538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2195735538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-15c81f88b8dc23b0292f805651d44a2a0f6077a54598a7873a9116020aba0f5d3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwte9BCdJJtNciylrULFg4reQrqbtFva3Zpk0f57U1fw5mVmHu9j4CF0SeCWAIi7kAYIDERhoEwWeH-EBqRIsFBMHKMBABDMlYBTdBbCOiEqcjJAz6Ns6U1V2yZmn7ZerqKtMvsVbVOlw9VNHW1mN3Z7EGxtXLVVdj17w-_TyeNN5lqfOW_K2Hmb2HJlmroM5-jEmU2wF797iF6nk5fxPZ4_zR7GozkuGVERE15K4qRcyKqkbAFUUSeBF5xUeW6oAVeAEIbnXEkjpGBGEVIABbNIHK_YEF31uTvffnQ2RL1uO9-kl5oSxQXjnMmkor2q9G0I3jq98_XW-L0moA_l6b48ncrTP-XpfTKx3hSSuFla_xf9j-sbJyhwwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2195735538</pqid></control><display><type>article</type><title>A gradient weighted extended finite element method (GW-XFEM) for fracture mechanics</title><source>Springer Nature - Complete Springer Journals</source><creator>Feng, S. Z. ; Bordas, S. P. A. ; Han, X. ; Wang, G. ; Li, Z. X.</creator><creatorcontrib>Feng, S. Z. ; Bordas, S. P. A. ; Han, X. ; Wang, G. ; Li, Z. X.</creatorcontrib><description>In this study, a gradient weighted extended finite element method (GW-XFEM) is presented for the analysis of fracture problems. For this method, the domain discretization is the same as the standard XFEM. However, the gradient field is constructed by considering the influences of the element itself and its adjacent elements. Based on the Shepard interpolation, the weighted strain filed can be obtained, which will be utilized to construct the discretized system equations. The validity of the presented method is fully investigated through several numerical examples. From these results, it is shown that compared with standard XFEM, the presented method can achieve much better accuracy, efficiency and higher convergence, when dealing with fracture analysis.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-019-02386-y</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Classical and Continuum Physics ; Control ; Discretization ; Dynamical Systems ; Engineering ; Engineering Thermodynamics ; Finite element analysis ; Finite element method ; Fracture mechanics ; Heat and Mass Transfer ; Interpolation ; Mathematical analysis ; Nonlinear programming ; Original Paper ; Solid Mechanics ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2019-07, Vol.230 (7), p.2385-2398</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2019</rights><rights>Acta Mechanica is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-15c81f88b8dc23b0292f805651d44a2a0f6077a54598a7873a9116020aba0f5d3</citedby><cites>FETCH-LOGICAL-c319t-15c81f88b8dc23b0292f805651d44a2a0f6077a54598a7873a9116020aba0f5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-019-02386-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-019-02386-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Feng, S. Z.</creatorcontrib><creatorcontrib>Bordas, S. P. A.</creatorcontrib><creatorcontrib>Han, X.</creatorcontrib><creatorcontrib>Wang, G.</creatorcontrib><creatorcontrib>Li, Z. X.</creatorcontrib><title>A gradient weighted extended finite element method (GW-XFEM) for fracture mechanics</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>In this study, a gradient weighted extended finite element method (GW-XFEM) is presented for the analysis of fracture problems. For this method, the domain discretization is the same as the standard XFEM. However, the gradient field is constructed by considering the influences of the element itself and its adjacent elements. Based on the Shepard interpolation, the weighted strain filed can be obtained, which will be utilized to construct the discretized system equations. The validity of the presented method is fully investigated through several numerical examples. From these results, it is shown that compared with standard XFEM, the presented method can achieve much better accuracy, efficiency and higher convergence, when dealing with fracture analysis.</description><subject>Classical and Continuum Physics</subject><subject>Control</subject><subject>Discretization</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Heat and Mass Transfer</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Nonlinear programming</subject><subject>Original Paper</subject><subject>Solid Mechanics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UE1LAzEQDaJgrf4BTwte9BCdJJtNciylrULFg4reQrqbtFva3Zpk0f57U1fw5mVmHu9j4CF0SeCWAIi7kAYIDERhoEwWeH-EBqRIsFBMHKMBABDMlYBTdBbCOiEqcjJAz6Ns6U1V2yZmn7ZerqKtMvsVbVOlw9VNHW1mN3Z7EGxtXLVVdj17w-_TyeNN5lqfOW_K2Hmb2HJlmroM5-jEmU2wF797iF6nk5fxPZ4_zR7GozkuGVERE15K4qRcyKqkbAFUUSeBF5xUeW6oAVeAEIbnXEkjpGBGEVIABbNIHK_YEF31uTvffnQ2RL1uO9-kl5oSxQXjnMmkor2q9G0I3jq98_XW-L0moA_l6b48ncrTP-XpfTKx3hSSuFla_xf9j-sbJyhwwQ</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Feng, S. Z.</creator><creator>Bordas, S. P. A.</creator><creator>Han, X.</creator><creator>Wang, G.</creator><creator>Li, Z. X.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20190701</creationdate><title>A gradient weighted extended finite element method (GW-XFEM) for fracture mechanics</title><author>Feng, S. Z. ; Bordas, S. P. A. ; Han, X. ; Wang, G. ; Li, Z. X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-15c81f88b8dc23b0292f805651d44a2a0f6077a54598a7873a9116020aba0f5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical and Continuum Physics</topic><topic>Control</topic><topic>Discretization</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Heat and Mass Transfer</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Nonlinear programming</topic><topic>Original Paper</topic><topic>Solid Mechanics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, S. Z.</creatorcontrib><creatorcontrib>Bordas, S. P. A.</creatorcontrib><creatorcontrib>Han, X.</creatorcontrib><creatorcontrib>Wang, G.</creatorcontrib><creatorcontrib>Li, Z. X.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, S. Z.</au><au>Bordas, S. P. A.</au><au>Han, X.</au><au>Wang, G.</au><au>Li, Z. X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A gradient weighted extended finite element method (GW-XFEM) for fracture mechanics</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>230</volume><issue>7</issue><spage>2385</spage><epage>2398</epage><pages>2385-2398</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>In this study, a gradient weighted extended finite element method (GW-XFEM) is presented for the analysis of fracture problems. For this method, the domain discretization is the same as the standard XFEM. However, the gradient field is constructed by considering the influences of the element itself and its adjacent elements. Based on the Shepard interpolation, the weighted strain filed can be obtained, which will be utilized to construct the discretized system equations. The validity of the presented method is fully investigated through several numerical examples. From these results, it is shown that compared with standard XFEM, the presented method can achieve much better accuracy, efficiency and higher convergence, when dealing with fracture analysis.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-019-02386-y</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2019-07, Vol.230 (7), p.2385-2398
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_journals_2195735538
source Springer Nature - Complete Springer Journals
subjects Classical and Continuum Physics
Control
Discretization
Dynamical Systems
Engineering
Engineering Thermodynamics
Finite element analysis
Finite element method
Fracture mechanics
Heat and Mass Transfer
Interpolation
Mathematical analysis
Nonlinear programming
Original Paper
Solid Mechanics
Theoretical and Applied Mechanics
Vibration
title A gradient weighted extended finite element method (GW-XFEM) for fracture mechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20gradient%20weighted%20extended%20finite%20element%20method%20(GW-XFEM)%20for%20fracture%20mechanics&rft.jtitle=Acta%20mechanica&rft.au=Feng,%20S.%20Z.&rft.date=2019-07-01&rft.volume=230&rft.issue=7&rft.spage=2385&rft.epage=2398&rft.pages=2385-2398&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-019-02386-y&rft_dat=%3Cproquest_cross%3E2195735538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2195735538&rft_id=info:pmid/&rfr_iscdi=true