Modelling the two-way coupling of tidal sand waves and benthic organisms: a linear stability approach
We use a linear stability approach to develop a process-based morphodynamic model including a two-way coupling between tidal sand wave dynamics and benthic organisms. With this model we are able to study both the effect of benthic organisms on the hydro- and sediment dynamics, and the effect of spat...
Gespeichert in:
Veröffentlicht in: | Environmental fluid mechanics (Dordrecht, Netherlands : 2001) Netherlands : 2001), 2019-10, Vol.19 (5), p.1073-1103 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1103 |
---|---|
container_issue | 5 |
container_start_page | 1073 |
container_title | Environmental fluid mechanics (Dordrecht, Netherlands : 2001) |
container_volume | 19 |
creator | Damveld, Johan H. Roos, Pieter C. Borsje, Bas W. Hulscher, Suzanne J. M. H. |
description | We use a linear stability approach to develop a process-based morphodynamic model including a two-way coupling between tidal sand wave dynamics and benthic organisms. With this model we are able to study both the effect of benthic organisms on the hydro- and sediment dynamics, and the effect of spatial and temporal environmental variations on the distribution of these organisms. Specifically, we include two coupling processes: the effect of the biomass of the organisms on the bottom slip parameter, and the effect of shear stress variations on the biological carrying capacity. We discuss the differences and similarities between the methodology used in this work and that from ‘traditional’ (morphodynamics only) stability modelling studies. Here, we end up with a
2
×
2
linear eigenvalue problem, which leads to two distinct eigenmodes for each topographic wave number. These eigenmodes control the growth and migration properties of both sand waves and benthic organisms (biomass). Apart from hydrodynamic forcing, the biomass also grows autonomously, which results in a changing fastest growing mode (FGM, i.e. the preferred wavelength) over time. As a result, in contrast to ‘traditional’ stability modelling studies, the FGM for a certain model outcome does not necessarily have to be dominant in the field. Therefore, we also analysed the temporal evolution of an initial bed hump (without perturbing biomass) and of an initial biomass hump (without perturbing topography). It turns out that these local disturbances may trigger the combined growth of sand waves and spatially varying biomass patterns. Moreover, the results reveal that the autonomous benthic growth significantly influences the growth rate of sand waves. Finally, we show that biomass maxima tend to concentrate in the region around the trough and lee side slope of sand waves, which corresponds to observations in the field. |
doi_str_mv | 10.1007/s10652-019-09673-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2195733328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2195733328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-9225d0db5e734a170d38ceebd5b3299c03f05149cf97518d6e573141dda81c933</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhCMEEqXwApwscTZ47TiOuaGKP6mIC5wtx3baVGkc7JSqb4_TIHHjtKPVzKz2y7JrILdAiLiLQApOMQGJiSwEw3CSzYCPggM5HXUhsMhBnmcXMW4IgYIKMsvcm7eubZtuhYa1Q8Pe470-ION3_XHpazQ0Vrco6s6ivf52EY2qct2wbgzyYaW7Jm7jPdIoJZwOKA66atpmOCDd98Frs77MzmrdRnf1O-fZ59Pjx-IFL9-fXxcPS2xYwQYsKeWW2Io7wXINglhWGucqyytGpTSE1YRDLk0tBYfSFi59CDlYq0swkrF5djP1prNfOxcHtfG70KWTioJMZsZomVx0cpngYwyuVn1otjocFBA14lQTTpVwqiNOBSnEplBM5m7lwl_1P6kfGVd4Uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2195733328</pqid></control><display><type>article</type><title>Modelling the two-way coupling of tidal sand waves and benthic organisms: a linear stability approach</title><source>Springer Nature - Complete Springer Journals</source><creator>Damveld, Johan H. ; Roos, Pieter C. ; Borsje, Bas W. ; Hulscher, Suzanne J. M. H.</creator><creatorcontrib>Damveld, Johan H. ; Roos, Pieter C. ; Borsje, Bas W. ; Hulscher, Suzanne J. M. H.</creatorcontrib><description>We use a linear stability approach to develop a process-based morphodynamic model including a two-way coupling between tidal sand wave dynamics and benthic organisms. With this model we are able to study both the effect of benthic organisms on the hydro- and sediment dynamics, and the effect of spatial and temporal environmental variations on the distribution of these organisms. Specifically, we include two coupling processes: the effect of the biomass of the organisms on the bottom slip parameter, and the effect of shear stress variations on the biological carrying capacity. We discuss the differences and similarities between the methodology used in this work and that from ‘traditional’ (morphodynamics only) stability modelling studies. Here, we end up with a
2
×
2
linear eigenvalue problem, which leads to two distinct eigenmodes for each topographic wave number. These eigenmodes control the growth and migration properties of both sand waves and benthic organisms (biomass). Apart from hydrodynamic forcing, the biomass also grows autonomously, which results in a changing fastest growing mode (FGM, i.e. the preferred wavelength) over time. As a result, in contrast to ‘traditional’ stability modelling studies, the FGM for a certain model outcome does not necessarily have to be dominant in the field. Therefore, we also analysed the temporal evolution of an initial bed hump (without perturbing biomass) and of an initial biomass hump (without perturbing topography). It turns out that these local disturbances may trigger the combined growth of sand waves and spatially varying biomass patterns. Moreover, the results reveal that the autonomous benthic growth significantly influences the growth rate of sand waves. Finally, we show that biomass maxima tend to concentrate in the region around the trough and lee side slope of sand waves, which corresponds to observations in the field.</description><identifier>ISSN: 1567-7419</identifier><identifier>EISSN: 1573-1510</identifier><identifier>DOI: 10.1007/s10652-019-09673-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Benthos ; Biomass ; Carrying capacity ; Classical Mechanics ; Coupling ; Dynamics ; Earth and Environmental Science ; Earth Sciences ; Eigenvalues ; Environmental Physics ; Evolution ; Growth rate ; Hydrodynamics ; Hydrogeology ; Hydrology/Water Resources ; Migration ; Modelling ; Oceanography ; Organisms ; Original Article ; Sand ; Sand waves ; Sediment dynamics ; Sedimentary structures ; Shear stress ; Stability ; Topographic waves ; Topography (geology) ; Wave dynamics ; Wave number ; Wavelength</subject><ispartof>Environmental fluid mechanics (Dordrecht, Netherlands : 2001), 2019-10, Vol.19 (5), p.1073-1103</ispartof><rights>The Author(s) 2019</rights><rights>Environmental Fluid Mechanics is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-9225d0db5e734a170d38ceebd5b3299c03f05149cf97518d6e573141dda81c933</citedby><cites>FETCH-LOGICAL-c363t-9225d0db5e734a170d38ceebd5b3299c03f05149cf97518d6e573141dda81c933</cites><orcidid>0000-0002-7866-7820 ; 0000-0002-8734-1830 ; 0000-0001-7191-7797 ; 0000-0002-0357-6270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10652-019-09673-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10652-019-09673-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Damveld, Johan H.</creatorcontrib><creatorcontrib>Roos, Pieter C.</creatorcontrib><creatorcontrib>Borsje, Bas W.</creatorcontrib><creatorcontrib>Hulscher, Suzanne J. M. H.</creatorcontrib><title>Modelling the two-way coupling of tidal sand waves and benthic organisms: a linear stability approach</title><title>Environmental fluid mechanics (Dordrecht, Netherlands : 2001)</title><addtitle>Environ Fluid Mech</addtitle><description>We use a linear stability approach to develop a process-based morphodynamic model including a two-way coupling between tidal sand wave dynamics and benthic organisms. With this model we are able to study both the effect of benthic organisms on the hydro- and sediment dynamics, and the effect of spatial and temporal environmental variations on the distribution of these organisms. Specifically, we include two coupling processes: the effect of the biomass of the organisms on the bottom slip parameter, and the effect of shear stress variations on the biological carrying capacity. We discuss the differences and similarities between the methodology used in this work and that from ‘traditional’ (morphodynamics only) stability modelling studies. Here, we end up with a
2
×
2
linear eigenvalue problem, which leads to two distinct eigenmodes for each topographic wave number. These eigenmodes control the growth and migration properties of both sand waves and benthic organisms (biomass). Apart from hydrodynamic forcing, the biomass also grows autonomously, which results in a changing fastest growing mode (FGM, i.e. the preferred wavelength) over time. As a result, in contrast to ‘traditional’ stability modelling studies, the FGM for a certain model outcome does not necessarily have to be dominant in the field. Therefore, we also analysed the temporal evolution of an initial bed hump (without perturbing biomass) and of an initial biomass hump (without perturbing topography). It turns out that these local disturbances may trigger the combined growth of sand waves and spatially varying biomass patterns. Moreover, the results reveal that the autonomous benthic growth significantly influences the growth rate of sand waves. Finally, we show that biomass maxima tend to concentrate in the region around the trough and lee side slope of sand waves, which corresponds to observations in the field.</description><subject>Benthos</subject><subject>Biomass</subject><subject>Carrying capacity</subject><subject>Classical Mechanics</subject><subject>Coupling</subject><subject>Dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Eigenvalues</subject><subject>Environmental Physics</subject><subject>Evolution</subject><subject>Growth rate</subject><subject>Hydrodynamics</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Migration</subject><subject>Modelling</subject><subject>Oceanography</subject><subject>Organisms</subject><subject>Original Article</subject><subject>Sand</subject><subject>Sand waves</subject><subject>Sediment dynamics</subject><subject>Sedimentary structures</subject><subject>Shear stress</subject><subject>Stability</subject><subject>Topographic waves</subject><subject>Topography (geology)</subject><subject>Wave dynamics</subject><subject>Wave number</subject><subject>Wavelength</subject><issn>1567-7419</issn><issn>1573-1510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kM1OwzAQhCMEEqXwApwscTZ47TiOuaGKP6mIC5wtx3baVGkc7JSqb4_TIHHjtKPVzKz2y7JrILdAiLiLQApOMQGJiSwEw3CSzYCPggM5HXUhsMhBnmcXMW4IgYIKMsvcm7eubZtuhYa1Q8Pe470-ION3_XHpazQ0Vrco6s6ivf52EY2qct2wbgzyYaW7Jm7jPdIoJZwOKA66atpmOCDd98Frs77MzmrdRnf1O-fZ59Pjx-IFL9-fXxcPS2xYwQYsKeWW2Io7wXINglhWGucqyytGpTSE1YRDLk0tBYfSFi59CDlYq0swkrF5djP1prNfOxcHtfG70KWTioJMZsZomVx0cpngYwyuVn1otjocFBA14lQTTpVwqiNOBSnEplBM5m7lwl_1P6kfGVd4Uw</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Damveld, Johan H.</creator><creator>Roos, Pieter C.</creator><creator>Borsje, Bas W.</creator><creator>Hulscher, Suzanne J. M. H.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7866-7820</orcidid><orcidid>https://orcid.org/0000-0002-8734-1830</orcidid><orcidid>https://orcid.org/0000-0001-7191-7797</orcidid><orcidid>https://orcid.org/0000-0002-0357-6270</orcidid></search><sort><creationdate>20191001</creationdate><title>Modelling the two-way coupling of tidal sand waves and benthic organisms: a linear stability approach</title><author>Damveld, Johan H. ; Roos, Pieter C. ; Borsje, Bas W. ; Hulscher, Suzanne J. M. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-9225d0db5e734a170d38ceebd5b3299c03f05149cf97518d6e573141dda81c933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Benthos</topic><topic>Biomass</topic><topic>Carrying capacity</topic><topic>Classical Mechanics</topic><topic>Coupling</topic><topic>Dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Eigenvalues</topic><topic>Environmental Physics</topic><topic>Evolution</topic><topic>Growth rate</topic><topic>Hydrodynamics</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Migration</topic><topic>Modelling</topic><topic>Oceanography</topic><topic>Organisms</topic><topic>Original Article</topic><topic>Sand</topic><topic>Sand waves</topic><topic>Sediment dynamics</topic><topic>Sedimentary structures</topic><topic>Shear stress</topic><topic>Stability</topic><topic>Topographic waves</topic><topic>Topography (geology)</topic><topic>Wave dynamics</topic><topic>Wave number</topic><topic>Wavelength</topic><toplevel>online_resources</toplevel><creatorcontrib>Damveld, Johan H.</creatorcontrib><creatorcontrib>Roos, Pieter C.</creatorcontrib><creatorcontrib>Borsje, Bas W.</creatorcontrib><creatorcontrib>Hulscher, Suzanne J. M. H.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental fluid mechanics (Dordrecht, Netherlands : 2001)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Damveld, Johan H.</au><au>Roos, Pieter C.</au><au>Borsje, Bas W.</au><au>Hulscher, Suzanne J. M. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling the two-way coupling of tidal sand waves and benthic organisms: a linear stability approach</atitle><jtitle>Environmental fluid mechanics (Dordrecht, Netherlands : 2001)</jtitle><stitle>Environ Fluid Mech</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>19</volume><issue>5</issue><spage>1073</spage><epage>1103</epage><pages>1073-1103</pages><issn>1567-7419</issn><eissn>1573-1510</eissn><abstract>We use a linear stability approach to develop a process-based morphodynamic model including a two-way coupling between tidal sand wave dynamics and benthic organisms. With this model we are able to study both the effect of benthic organisms on the hydro- and sediment dynamics, and the effect of spatial and temporal environmental variations on the distribution of these organisms. Specifically, we include two coupling processes: the effect of the biomass of the organisms on the bottom slip parameter, and the effect of shear stress variations on the biological carrying capacity. We discuss the differences and similarities between the methodology used in this work and that from ‘traditional’ (morphodynamics only) stability modelling studies. Here, we end up with a
2
×
2
linear eigenvalue problem, which leads to two distinct eigenmodes for each topographic wave number. These eigenmodes control the growth and migration properties of both sand waves and benthic organisms (biomass). Apart from hydrodynamic forcing, the biomass also grows autonomously, which results in a changing fastest growing mode (FGM, i.e. the preferred wavelength) over time. As a result, in contrast to ‘traditional’ stability modelling studies, the FGM for a certain model outcome does not necessarily have to be dominant in the field. Therefore, we also analysed the temporal evolution of an initial bed hump (without perturbing biomass) and of an initial biomass hump (without perturbing topography). It turns out that these local disturbances may trigger the combined growth of sand waves and spatially varying biomass patterns. Moreover, the results reveal that the autonomous benthic growth significantly influences the growth rate of sand waves. Finally, we show that biomass maxima tend to concentrate in the region around the trough and lee side slope of sand waves, which corresponds to observations in the field.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10652-019-09673-1</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-7866-7820</orcidid><orcidid>https://orcid.org/0000-0002-8734-1830</orcidid><orcidid>https://orcid.org/0000-0001-7191-7797</orcidid><orcidid>https://orcid.org/0000-0002-0357-6270</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1567-7419 |
ispartof | Environmental fluid mechanics (Dordrecht, Netherlands : 2001), 2019-10, Vol.19 (5), p.1073-1103 |
issn | 1567-7419 1573-1510 |
language | eng |
recordid | cdi_proquest_journals_2195733328 |
source | Springer Nature - Complete Springer Journals |
subjects | Benthos Biomass Carrying capacity Classical Mechanics Coupling Dynamics Earth and Environmental Science Earth Sciences Eigenvalues Environmental Physics Evolution Growth rate Hydrodynamics Hydrogeology Hydrology/Water Resources Migration Modelling Oceanography Organisms Original Article Sand Sand waves Sediment dynamics Sedimentary structures Shear stress Stability Topographic waves Topography (geology) Wave dynamics Wave number Wavelength |
title | Modelling the two-way coupling of tidal sand waves and benthic organisms: a linear stability approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T09%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20the%20two-way%20coupling%20of%20tidal%20sand%20waves%20and%20benthic%20organisms:%20a%20linear%20stability%20approach&rft.jtitle=Environmental%20fluid%20mechanics%20(Dordrecht,%20Netherlands%20:%202001)&rft.au=Damveld,%20Johan%20H.&rft.date=2019-10-01&rft.volume=19&rft.issue=5&rft.spage=1073&rft.epage=1103&rft.pages=1073-1103&rft.issn=1567-7419&rft.eissn=1573-1510&rft_id=info:doi/10.1007/s10652-019-09673-1&rft_dat=%3Cproquest_cross%3E2195733328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2195733328&rft_id=info:pmid/&rfr_iscdi=true |