Expanding anaerobic alkane metabolism in the domain of Archaea
Methanogenesis and anaerobic methane oxidation through methyl-coenzyme M reductase (MCR) as a key enzyme have been suggested to be basal pathways of archaea 1 . How widespread MCR-based alkane metabolism is among archaea, where it occurs and how it evolved remain elusive. Here, we performed a global...
Gespeichert in:
Veröffentlicht in: | Nature microbiology 2019-04, Vol.4 (4), p.595-602 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 602 |
---|---|
container_issue | 4 |
container_start_page | 595 |
container_title | Nature microbiology |
container_volume | 4 |
creator | Wang, Yinzhao Wegener, Gunter Hou, Jialin Wang, Fengping Xiao, Xiang |
description | Methanogenesis and anaerobic methane oxidation through methyl-coenzyme M reductase (MCR) as a key enzyme have been suggested to be basal pathways of archaea
1
. How widespread MCR-based alkane metabolism is among archaea, where it occurs and how it evolved remain elusive. Here, we performed a global survey of MCR-encoding genomes based on metagenomic data from various environments. Eleven high-quality
mcr
-containing metagenomic-assembled genomes were obtained belonging to the Archaeoglobi in the Euryarchaeota, Hadesarchaeota and different TACK superphylum archaea, including the Nezhaarchaeota, Korarchaeota and Verstraetearchaeota. Archaeoglobi WYZ-LMO1 and WYZ-LMO3 and Korarchaeota WYZ-LMO9 encode both the (reverse) methanogenesis and the dissimilatory sulfate reduction pathway, suggesting that they have the genomic potential to couple both pathways in individual organisms. The Hadesarchaeota WYZ-LMO4–6 and Archaeoglobi JdFR-42 encode highly divergent MCRs, enzymes that may enable them to thrive on non-methane alkanes. The occurrence of
mcr
genes in different archaeal phyla indicates that MCR-based alkane metabolism is common in the domain of Archaea.
A metagenome-based survey of archaeal genomes encoding methyl-coenzyme M reductase (MCR)—a key enzyme for methanogenesis and anaerobic methane oxidation—reveals that MCR-based metabolism is common and diverse in archaea, and may be coupled to dissimilatory sulfate reduction in single organisms. |
doi_str_mv | 10.1038/s41564-019-0364-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2195266973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2195266973</sourcerecordid><originalsourceid>FETCH-LOGICAL-p179t-affde9c0f7d25869b4a4801db77f0c1216f2b5942b0a2113bbcadd9c15f2010c3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMgttT-AC-y4Hl1JtnNbi5CKfUDCl70HCabpN3a_XCzBf33prTiaV6Yh3eYh7EbhHsEUT6EDHOZpYAqBREDv2BTDnmZ5ryQEzYPYQcAKLmUpbxiEwGlEAUvp-xx9d1Ta-t2k1BLbuhMXSW0_6TWJY0byXT7OjRJ3Sbj1iW2ayjGzieLodqSo2t26Wkf3Pw8Z-zjafW-fEnXb8-vy8U67bFQY0reW6cq8IXleSmVySgrAa0pCg8VcpSem1xl3ABxRGFMRdaqCnPPAaESM3Z36u2H7uvgwqh33WFo40nNUeXxL1WISN2eqYNpnNX9UDc0_Oi_dyPAT0CIq3bjhv8aBH1UqU8qdVSpjyo1F7-2w2TM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2195266973</pqid></control><display><type>article</type><title>Expanding anaerobic alkane metabolism in the domain of Archaea</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Yinzhao ; Wegener, Gunter ; Hou, Jialin ; Wang, Fengping ; Xiao, Xiang</creator><creatorcontrib>Wang, Yinzhao ; Wegener, Gunter ; Hou, Jialin ; Wang, Fengping ; Xiao, Xiang</creatorcontrib><description>Methanogenesis and anaerobic methane oxidation through methyl-coenzyme M reductase (MCR) as a key enzyme have been suggested to be basal pathways of archaea
1
. How widespread MCR-based alkane metabolism is among archaea, where it occurs and how it evolved remain elusive. Here, we performed a global survey of MCR-encoding genomes based on metagenomic data from various environments. Eleven high-quality
mcr
-containing metagenomic-assembled genomes were obtained belonging to the Archaeoglobi in the Euryarchaeota, Hadesarchaeota and different TACK superphylum archaea, including the Nezhaarchaeota, Korarchaeota and Verstraetearchaeota. Archaeoglobi WYZ-LMO1 and WYZ-LMO3 and Korarchaeota WYZ-LMO9 encode both the (reverse) methanogenesis and the dissimilatory sulfate reduction pathway, suggesting that they have the genomic potential to couple both pathways in individual organisms. The Hadesarchaeota WYZ-LMO4–6 and Archaeoglobi JdFR-42 encode highly divergent MCRs, enzymes that may enable them to thrive on non-methane alkanes. The occurrence of
mcr
genes in different archaeal phyla indicates that MCR-based alkane metabolism is common in the domain of Archaea.
A metagenome-based survey of archaeal genomes encoding methyl-coenzyme M reductase (MCR)—a key enzyme for methanogenesis and anaerobic methane oxidation—reveals that MCR-based metabolism is common and diverse in archaea, and may be coupled to dissimilatory sulfate reduction in single organisms.</description><identifier>EISSN: 2058-5276</identifier><identifier>DOI: 10.1038/s41564-019-0364-2</identifier><identifier>PMID: 30833728</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/326/26 ; 631/326/26/2142 ; 631/326/26/2523 ; Alkanes ; Alkanes - chemistry ; Alkanes - metabolism ; Archaea ; Archaea - chemistry ; Archaea - classification ; Archaea - genetics ; Archaea - metabolism ; Archaeal Proteins - genetics ; Archaeal Proteins - metabolism ; Biomedical and Life Sciences ; Coenzyme M ; Genomes ; Infectious Diseases ; Korarchaeota ; Letter ; Life Sciences ; Medical Microbiology ; Metabolism ; Methane ; Methane - metabolism ; Methanogenesis ; Microbiology ; Oxidation ; Parasitology ; Phylogeny ; Reductase ; Sulfate reduction ; Virology</subject><ispartof>Nature microbiology, 2019-04, Vol.4 (4), p.595-602</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p179t-affde9c0f7d25869b4a4801db77f0c1216f2b5942b0a2113bbcadd9c15f2010c3</cites><orcidid>0000-0002-3429-8410 ; 0000-0002-6819-373X ; 0000-0001-6785-7728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41564-019-0364-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41564-019-0364-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30833728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yinzhao</creatorcontrib><creatorcontrib>Wegener, Gunter</creatorcontrib><creatorcontrib>Hou, Jialin</creatorcontrib><creatorcontrib>Wang, Fengping</creatorcontrib><creatorcontrib>Xiao, Xiang</creatorcontrib><title>Expanding anaerobic alkane metabolism in the domain of Archaea</title><title>Nature microbiology</title><addtitle>Nat Microbiol</addtitle><addtitle>Nat Microbiol</addtitle><description>Methanogenesis and anaerobic methane oxidation through methyl-coenzyme M reductase (MCR) as a key enzyme have been suggested to be basal pathways of archaea
1
. How widespread MCR-based alkane metabolism is among archaea, where it occurs and how it evolved remain elusive. Here, we performed a global survey of MCR-encoding genomes based on metagenomic data from various environments. Eleven high-quality
mcr
-containing metagenomic-assembled genomes were obtained belonging to the Archaeoglobi in the Euryarchaeota, Hadesarchaeota and different TACK superphylum archaea, including the Nezhaarchaeota, Korarchaeota and Verstraetearchaeota. Archaeoglobi WYZ-LMO1 and WYZ-LMO3 and Korarchaeota WYZ-LMO9 encode both the (reverse) methanogenesis and the dissimilatory sulfate reduction pathway, suggesting that they have the genomic potential to couple both pathways in individual organisms. The Hadesarchaeota WYZ-LMO4–6 and Archaeoglobi JdFR-42 encode highly divergent MCRs, enzymes that may enable them to thrive on non-methane alkanes. The occurrence of
mcr
genes in different archaeal phyla indicates that MCR-based alkane metabolism is common in the domain of Archaea.
A metagenome-based survey of archaeal genomes encoding methyl-coenzyme M reductase (MCR)—a key enzyme for methanogenesis and anaerobic methane oxidation—reveals that MCR-based metabolism is common and diverse in archaea, and may be coupled to dissimilatory sulfate reduction in single organisms.</description><subject>631/326/26</subject><subject>631/326/26/2142</subject><subject>631/326/26/2523</subject><subject>Alkanes</subject><subject>Alkanes - chemistry</subject><subject>Alkanes - metabolism</subject><subject>Archaea</subject><subject>Archaea - chemistry</subject><subject>Archaea - classification</subject><subject>Archaea - genetics</subject><subject>Archaea - metabolism</subject><subject>Archaeal Proteins - genetics</subject><subject>Archaeal Proteins - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Coenzyme M</subject><subject>Genomes</subject><subject>Infectious Diseases</subject><subject>Korarchaeota</subject><subject>Letter</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Metabolism</subject><subject>Methane</subject><subject>Methane - metabolism</subject><subject>Methanogenesis</subject><subject>Microbiology</subject><subject>Oxidation</subject><subject>Parasitology</subject><subject>Phylogeny</subject><subject>Reductase</subject><subject>Sulfate reduction</subject><subject>Virology</subject><issn>2058-5276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpFkE1LAzEQhoMgttT-AC-y4Hl1JtnNbi5CKfUDCl70HCabpN3a_XCzBf33prTiaV6Yh3eYh7EbhHsEUT6EDHOZpYAqBREDv2BTDnmZ5ryQEzYPYQcAKLmUpbxiEwGlEAUvp-xx9d1Ta-t2k1BLbuhMXSW0_6TWJY0byXT7OjRJ3Sbj1iW2ayjGzieLodqSo2t26Wkf3Pw8Z-zjafW-fEnXb8-vy8U67bFQY0reW6cq8IXleSmVySgrAa0pCg8VcpSem1xl3ABxRGFMRdaqCnPPAaESM3Z36u2H7uvgwqh33WFo40nNUeXxL1WISN2eqYNpnNX9UDc0_Oi_dyPAT0CIq3bjhv8aBH1UqU8qdVSpjyo1F7-2w2TM</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Wang, Yinzhao</creator><creator>Wegener, Gunter</creator><creator>Hou, Jialin</creator><creator>Wang, Fengping</creator><creator>Xiao, Xiang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3429-8410</orcidid><orcidid>https://orcid.org/0000-0002-6819-373X</orcidid><orcidid>https://orcid.org/0000-0001-6785-7728</orcidid></search><sort><creationdate>20190401</creationdate><title>Expanding anaerobic alkane metabolism in the domain of Archaea</title><author>Wang, Yinzhao ; Wegener, Gunter ; Hou, Jialin ; Wang, Fengping ; Xiao, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p179t-affde9c0f7d25869b4a4801db77f0c1216f2b5942b0a2113bbcadd9c15f2010c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/326/26</topic><topic>631/326/26/2142</topic><topic>631/326/26/2523</topic><topic>Alkanes</topic><topic>Alkanes - chemistry</topic><topic>Alkanes - metabolism</topic><topic>Archaea</topic><topic>Archaea - chemistry</topic><topic>Archaea - classification</topic><topic>Archaea - genetics</topic><topic>Archaea - metabolism</topic><topic>Archaeal Proteins - genetics</topic><topic>Archaeal Proteins - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Coenzyme M</topic><topic>Genomes</topic><topic>Infectious Diseases</topic><topic>Korarchaeota</topic><topic>Letter</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Metabolism</topic><topic>Methane</topic><topic>Methane - metabolism</topic><topic>Methanogenesis</topic><topic>Microbiology</topic><topic>Oxidation</topic><topic>Parasitology</topic><topic>Phylogeny</topic><topic>Reductase</topic><topic>Sulfate reduction</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yinzhao</creatorcontrib><creatorcontrib>Wegener, Gunter</creatorcontrib><creatorcontrib>Hou, Jialin</creatorcontrib><creatorcontrib>Wang, Fengping</creatorcontrib><creatorcontrib>Xiao, Xiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Nature microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yinzhao</au><au>Wegener, Gunter</au><au>Hou, Jialin</au><au>Wang, Fengping</au><au>Xiao, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expanding anaerobic alkane metabolism in the domain of Archaea</atitle><jtitle>Nature microbiology</jtitle><stitle>Nat Microbiol</stitle><addtitle>Nat Microbiol</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>4</volume><issue>4</issue><spage>595</spage><epage>602</epage><pages>595-602</pages><eissn>2058-5276</eissn><abstract>Methanogenesis and anaerobic methane oxidation through methyl-coenzyme M reductase (MCR) as a key enzyme have been suggested to be basal pathways of archaea
1
. How widespread MCR-based alkane metabolism is among archaea, where it occurs and how it evolved remain elusive. Here, we performed a global survey of MCR-encoding genomes based on metagenomic data from various environments. Eleven high-quality
mcr
-containing metagenomic-assembled genomes were obtained belonging to the Archaeoglobi in the Euryarchaeota, Hadesarchaeota and different TACK superphylum archaea, including the Nezhaarchaeota, Korarchaeota and Verstraetearchaeota. Archaeoglobi WYZ-LMO1 and WYZ-LMO3 and Korarchaeota WYZ-LMO9 encode both the (reverse) methanogenesis and the dissimilatory sulfate reduction pathway, suggesting that they have the genomic potential to couple both pathways in individual organisms. The Hadesarchaeota WYZ-LMO4–6 and Archaeoglobi JdFR-42 encode highly divergent MCRs, enzymes that may enable them to thrive on non-methane alkanes. The occurrence of
mcr
genes in different archaeal phyla indicates that MCR-based alkane metabolism is common in the domain of Archaea.
A metagenome-based survey of archaeal genomes encoding methyl-coenzyme M reductase (MCR)—a key enzyme for methanogenesis and anaerobic methane oxidation—reveals that MCR-based metabolism is common and diverse in archaea, and may be coupled to dissimilatory sulfate reduction in single organisms.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30833728</pmid><doi>10.1038/s41564-019-0364-2</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3429-8410</orcidid><orcidid>https://orcid.org/0000-0002-6819-373X</orcidid><orcidid>https://orcid.org/0000-0001-6785-7728</orcidid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2058-5276 |
ispartof | Nature microbiology, 2019-04, Vol.4 (4), p.595-602 |
issn | 2058-5276 |
language | eng |
recordid | cdi_proquest_journals_2195266973 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 631/326/26 631/326/26/2142 631/326/26/2523 Alkanes Alkanes - chemistry Alkanes - metabolism Archaea Archaea - chemistry Archaea - classification Archaea - genetics Archaea - metabolism Archaeal Proteins - genetics Archaeal Proteins - metabolism Biomedical and Life Sciences Coenzyme M Genomes Infectious Diseases Korarchaeota Letter Life Sciences Medical Microbiology Metabolism Methane Methane - metabolism Methanogenesis Microbiology Oxidation Parasitology Phylogeny Reductase Sulfate reduction Virology |
title | Expanding anaerobic alkane metabolism in the domain of Archaea |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expanding%20anaerobic%20alkane%20metabolism%20in%20the%20domain%20of%20Archaea&rft.jtitle=Nature%20microbiology&rft.au=Wang,%20Yinzhao&rft.date=2019-04-01&rft.volume=4&rft.issue=4&rft.spage=595&rft.epage=602&rft.pages=595-602&rft.eissn=2058-5276&rft_id=info:doi/10.1038/s41564-019-0364-2&rft_dat=%3Cproquest_pubme%3E2195266973%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2195266973&rft_id=info:pmid/30833728&rfr_iscdi=true |