Visualization of liquid water in a lung-inspired flow-field based polymer electrolyte membrane fuel cell via neutron radiography
Lung-inspired, fractal flow-fields hold great potential in improving the performance of polymer electrolyte membrane fuel cells (PEMFCs) by providing uniform gas distribution across the electrodes and ensuring minimum entropy production in the whole system. However, the inherent susceptibility of th...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2019-03, Vol.170, p.14-21 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | |
container_start_page | 14 |
container_title | Energy (Oxford) |
container_volume | 170 |
creator | Cho, J.I.S. Neville, T.P. Trogadas, P. Meyer, Q. Wu, Yunsong Ziesche, R. Boillat, P. Cochet, M. Manzi-Orezzoli, V. Shearing, P. Brett, D.J.L. Coppens, M.-O. |
description | Lung-inspired, fractal flow-fields hold great potential in improving the performance of polymer electrolyte membrane fuel cells (PEMFCs) by providing uniform gas distribution across the electrodes and ensuring minimum entropy production in the whole system. However, the inherent susceptibility of the fractal flow-fields to flooding renders their use inadequate at high humidity conditions. In-depth understanding of water management in lung-inspired flow-fields is indispensable for the implementation of alternative outlet channel geometries or engineered water removal strategies to alleviate flooding. Here, liquid water formation and transport across the lung-inspired and serpentine flow-field based PEMFCs are evaluated using neutron radiography. The results reveal a propensity to flooding in the interdigitated outlet channels of the fractal flow-field with N = 4 generations as a result of slow gas velocity and narrow channel dimensions, which leads to significant performance deterioration. Neutron images also elucidate the importance of ensuring a well-defined internal channel structure of the fractal flow-fields to prevent backflow of liquid water via wicking and capillary pressure build-up arising from the narrow inlet gas channels and hydrophobic gas diffusion layer.
•Neutron radiographs are presented for the lung-inspired and serpentine flow-fields.•A well-defined channel structure of the fractal flow-field is indispensable.•Water removal strategies required to alleviate flooding in the fractal flow-field. |
doi_str_mv | 10.1016/j.energy.2018.12.143 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2195248670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544218325155</els_id><sourcerecordid>2195248670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-ec4b0318fc13252933a0be3fd66a59bb90eb89c6f5af881d6221d337f65985073</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVpodsk_6AHQc929WHJ8qVQQpsWArm0uQpZGm21aCVHshO2p_z0KmzPOQ0zPO8M8yD0kZKeEio_H3pIUPannhGqesp6OvA3aEfVyDs5KvEW7QiXpBPDwN6jD7UeCCFCTdMOPd-HupkY_po15ISzxzE8bMHhJ7NCwSFhg-OW9l1IdQkFHPYxP3U-QHR4NrUNlhxPx8ZCBLuW1qyAj3Cci0mA_QYRW4gRPwaDE2yNSLgYF_K-mOXP6RK98yZWuPpfL9Dv799-Xf_obu9ufl5_ve3soMTagR1mwqnylnIm2MS5ITNw76Q0YprnicCsJiu9MF4p6iRj1HE-eikmJcjIL9Cn896l5IcN6qoPeSupndSMToINSo6kUcOZsiXXWsDrpYSjKSdNiX5xrQ_67Fq_uNaU6ea6xb6cY9A-eAxQdLUBkgXXlNlVuxxeX_APYzeMQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2195248670</pqid></control><display><type>article</type><title>Visualization of liquid water in a lung-inspired flow-field based polymer electrolyte membrane fuel cell via neutron radiography</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cho, J.I.S. ; Neville, T.P. ; Trogadas, P. ; Meyer, Q. ; Wu, Yunsong ; Ziesche, R. ; Boillat, P. ; Cochet, M. ; Manzi-Orezzoli, V. ; Shearing, P. ; Brett, D.J.L. ; Coppens, M.-O.</creator><creatorcontrib>Cho, J.I.S. ; Neville, T.P. ; Trogadas, P. ; Meyer, Q. ; Wu, Yunsong ; Ziesche, R. ; Boillat, P. ; Cochet, M. ; Manzi-Orezzoli, V. ; Shearing, P. ; Brett, D.J.L. ; Coppens, M.-O.</creatorcontrib><description>Lung-inspired, fractal flow-fields hold great potential in improving the performance of polymer electrolyte membrane fuel cells (PEMFCs) by providing uniform gas distribution across the electrodes and ensuring minimum entropy production in the whole system. However, the inherent susceptibility of the fractal flow-fields to flooding renders their use inadequate at high humidity conditions. In-depth understanding of water management in lung-inspired flow-fields is indispensable for the implementation of alternative outlet channel geometries or engineered water removal strategies to alleviate flooding. Here, liquid water formation and transport across the lung-inspired and serpentine flow-field based PEMFCs are evaluated using neutron radiography. The results reveal a propensity to flooding in the interdigitated outlet channels of the fractal flow-field with N = 4 generations as a result of slow gas velocity and narrow channel dimensions, which leads to significant performance deterioration. Neutron images also elucidate the importance of ensuring a well-defined internal channel structure of the fractal flow-fields to prevent backflow of liquid water via wicking and capillary pressure build-up arising from the narrow inlet gas channels and hydrophobic gas diffusion layer.
•Neutron radiographs are presented for the lung-inspired and serpentine flow-fields.•A well-defined channel structure of the fractal flow-field is indispensable.•Water removal strategies required to alleviate flooding in the fractal flow-field.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2018.12.143</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Capillary pressure ; Channels ; Diffusion layers ; Electrolytes ; Electrolytic cells ; Entropy ; Flooding ; Flow ; Fractal flow-field ; Fractals ; Fuel cells ; Fuel technology ; Gaseous diffusion ; Hydrophobicity ; Lung-inspired flow-field ; Lungs ; Neutron imaging ; Neutron radiography ; Outlet channels ; Performance degradation ; Polymers ; Proton exchange membrane fuel cells ; Radiography ; Serpentine ; Water ; Water depth ; Water management ; Water treatment</subject><ispartof>Energy (Oxford), 2019-03, Vol.170, p.14-21</ispartof><rights>2019 The Authors</rights><rights>Copyright Elsevier BV Mar 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-ec4b0318fc13252933a0be3fd66a59bb90eb89c6f5af881d6221d337f65985073</citedby><cites>FETCH-LOGICAL-c485t-ec4b0318fc13252933a0be3fd66a59bb90eb89c6f5af881d6221d337f65985073</cites><orcidid>0000-0003-1844-5924 ; 0000-0002-1810-2537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2018.12.143$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Cho, J.I.S.</creatorcontrib><creatorcontrib>Neville, T.P.</creatorcontrib><creatorcontrib>Trogadas, P.</creatorcontrib><creatorcontrib>Meyer, Q.</creatorcontrib><creatorcontrib>Wu, Yunsong</creatorcontrib><creatorcontrib>Ziesche, R.</creatorcontrib><creatorcontrib>Boillat, P.</creatorcontrib><creatorcontrib>Cochet, M.</creatorcontrib><creatorcontrib>Manzi-Orezzoli, V.</creatorcontrib><creatorcontrib>Shearing, P.</creatorcontrib><creatorcontrib>Brett, D.J.L.</creatorcontrib><creatorcontrib>Coppens, M.-O.</creatorcontrib><title>Visualization of liquid water in a lung-inspired flow-field based polymer electrolyte membrane fuel cell via neutron radiography</title><title>Energy (Oxford)</title><description>Lung-inspired, fractal flow-fields hold great potential in improving the performance of polymer electrolyte membrane fuel cells (PEMFCs) by providing uniform gas distribution across the electrodes and ensuring minimum entropy production in the whole system. However, the inherent susceptibility of the fractal flow-fields to flooding renders their use inadequate at high humidity conditions. In-depth understanding of water management in lung-inspired flow-fields is indispensable for the implementation of alternative outlet channel geometries or engineered water removal strategies to alleviate flooding. Here, liquid water formation and transport across the lung-inspired and serpentine flow-field based PEMFCs are evaluated using neutron radiography. The results reveal a propensity to flooding in the interdigitated outlet channels of the fractal flow-field with N = 4 generations as a result of slow gas velocity and narrow channel dimensions, which leads to significant performance deterioration. Neutron images also elucidate the importance of ensuring a well-defined internal channel structure of the fractal flow-fields to prevent backflow of liquid water via wicking and capillary pressure build-up arising from the narrow inlet gas channels and hydrophobic gas diffusion layer.
•Neutron radiographs are presented for the lung-inspired and serpentine flow-fields.•A well-defined channel structure of the fractal flow-field is indispensable.•Water removal strategies required to alleviate flooding in the fractal flow-field.</description><subject>Capillary pressure</subject><subject>Channels</subject><subject>Diffusion layers</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Entropy</subject><subject>Flooding</subject><subject>Flow</subject><subject>Fractal flow-field</subject><subject>Fractals</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Gaseous diffusion</subject><subject>Hydrophobicity</subject><subject>Lung-inspired flow-field</subject><subject>Lungs</subject><subject>Neutron imaging</subject><subject>Neutron radiography</subject><subject>Outlet channels</subject><subject>Performance degradation</subject><subject>Polymers</subject><subject>Proton exchange membrane fuel cells</subject><subject>Radiography</subject><subject>Serpentine</subject><subject>Water</subject><subject>Water depth</subject><subject>Water management</subject><subject>Water treatment</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVpodsk_6AHQc929WHJ8qVQQpsWArm0uQpZGm21aCVHshO2p_z0KmzPOQ0zPO8M8yD0kZKeEio_H3pIUPannhGqesp6OvA3aEfVyDs5KvEW7QiXpBPDwN6jD7UeCCFCTdMOPd-HupkY_po15ISzxzE8bMHhJ7NCwSFhg-OW9l1IdQkFHPYxP3U-QHR4NrUNlhxPx8ZCBLuW1qyAj3Cci0mA_QYRW4gRPwaDE2yNSLgYF_K-mOXP6RK98yZWuPpfL9Dv799-Xf_obu9ufl5_ve3soMTagR1mwqnylnIm2MS5ITNw76Q0YprnicCsJiu9MF4p6iRj1HE-eikmJcjIL9Cn896l5IcN6qoPeSupndSMToINSo6kUcOZsiXXWsDrpYSjKSdNiX5xrQ_67Fq_uNaU6ea6xb6cY9A-eAxQdLUBkgXXlNlVuxxeX_APYzeMQg</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Cho, J.I.S.</creator><creator>Neville, T.P.</creator><creator>Trogadas, P.</creator><creator>Meyer, Q.</creator><creator>Wu, Yunsong</creator><creator>Ziesche, R.</creator><creator>Boillat, P.</creator><creator>Cochet, M.</creator><creator>Manzi-Orezzoli, V.</creator><creator>Shearing, P.</creator><creator>Brett, D.J.L.</creator><creator>Coppens, M.-O.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1844-5924</orcidid><orcidid>https://orcid.org/0000-0002-1810-2537</orcidid></search><sort><creationdate>20190301</creationdate><title>Visualization of liquid water in a lung-inspired flow-field based polymer electrolyte membrane fuel cell via neutron radiography</title><author>Cho, J.I.S. ; Neville, T.P. ; Trogadas, P. ; Meyer, Q. ; Wu, Yunsong ; Ziesche, R. ; Boillat, P. ; Cochet, M. ; Manzi-Orezzoli, V. ; Shearing, P. ; Brett, D.J.L. ; Coppens, M.-O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-ec4b0318fc13252933a0be3fd66a59bb90eb89c6f5af881d6221d337f65985073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Capillary pressure</topic><topic>Channels</topic><topic>Diffusion layers</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Entropy</topic><topic>Flooding</topic><topic>Flow</topic><topic>Fractal flow-field</topic><topic>Fractals</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Gaseous diffusion</topic><topic>Hydrophobicity</topic><topic>Lung-inspired flow-field</topic><topic>Lungs</topic><topic>Neutron imaging</topic><topic>Neutron radiography</topic><topic>Outlet channels</topic><topic>Performance degradation</topic><topic>Polymers</topic><topic>Proton exchange membrane fuel cells</topic><topic>Radiography</topic><topic>Serpentine</topic><topic>Water</topic><topic>Water depth</topic><topic>Water management</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, J.I.S.</creatorcontrib><creatorcontrib>Neville, T.P.</creatorcontrib><creatorcontrib>Trogadas, P.</creatorcontrib><creatorcontrib>Meyer, Q.</creatorcontrib><creatorcontrib>Wu, Yunsong</creatorcontrib><creatorcontrib>Ziesche, R.</creatorcontrib><creatorcontrib>Boillat, P.</creatorcontrib><creatorcontrib>Cochet, M.</creatorcontrib><creatorcontrib>Manzi-Orezzoli, V.</creatorcontrib><creatorcontrib>Shearing, P.</creatorcontrib><creatorcontrib>Brett, D.J.L.</creatorcontrib><creatorcontrib>Coppens, M.-O.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, J.I.S.</au><au>Neville, T.P.</au><au>Trogadas, P.</au><au>Meyer, Q.</au><au>Wu, Yunsong</au><au>Ziesche, R.</au><au>Boillat, P.</au><au>Cochet, M.</au><au>Manzi-Orezzoli, V.</au><au>Shearing, P.</au><au>Brett, D.J.L.</au><au>Coppens, M.-O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualization of liquid water in a lung-inspired flow-field based polymer electrolyte membrane fuel cell via neutron radiography</atitle><jtitle>Energy (Oxford)</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>170</volume><spage>14</spage><epage>21</epage><pages>14-21</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>Lung-inspired, fractal flow-fields hold great potential in improving the performance of polymer electrolyte membrane fuel cells (PEMFCs) by providing uniform gas distribution across the electrodes and ensuring minimum entropy production in the whole system. However, the inherent susceptibility of the fractal flow-fields to flooding renders their use inadequate at high humidity conditions. In-depth understanding of water management in lung-inspired flow-fields is indispensable for the implementation of alternative outlet channel geometries or engineered water removal strategies to alleviate flooding. Here, liquid water formation and transport across the lung-inspired and serpentine flow-field based PEMFCs are evaluated using neutron radiography. The results reveal a propensity to flooding in the interdigitated outlet channels of the fractal flow-field with N = 4 generations as a result of slow gas velocity and narrow channel dimensions, which leads to significant performance deterioration. Neutron images also elucidate the importance of ensuring a well-defined internal channel structure of the fractal flow-fields to prevent backflow of liquid water via wicking and capillary pressure build-up arising from the narrow inlet gas channels and hydrophobic gas diffusion layer.
•Neutron radiographs are presented for the lung-inspired and serpentine flow-fields.•A well-defined channel structure of the fractal flow-field is indispensable.•Water removal strategies required to alleviate flooding in the fractal flow-field.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2018.12.143</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1844-5924</orcidid><orcidid>https://orcid.org/0000-0002-1810-2537</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2019-03, Vol.170, p.14-21 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_proquest_journals_2195248670 |
source | Access via ScienceDirect (Elsevier) |
subjects | Capillary pressure Channels Diffusion layers Electrolytes Electrolytic cells Entropy Flooding Flow Fractal flow-field Fractals Fuel cells Fuel technology Gaseous diffusion Hydrophobicity Lung-inspired flow-field Lungs Neutron imaging Neutron radiography Outlet channels Performance degradation Polymers Proton exchange membrane fuel cells Radiography Serpentine Water Water depth Water management Water treatment |
title | Visualization of liquid water in a lung-inspired flow-field based polymer electrolyte membrane fuel cell via neutron radiography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualization%20of%20liquid%20water%20in%20a%20lung-inspired%20flow-field%20based%20polymer%20electrolyte%20membrane%20fuel%20cell%20via%20neutron%20radiography&rft.jtitle=Energy%20(Oxford)&rft.au=Cho,%20J.I.S.&rft.date=2019-03-01&rft.volume=170&rft.spage=14&rft.epage=21&rft.pages=14-21&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2018.12.143&rft_dat=%3Cproquest_cross%3E2195248670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2195248670&rft_id=info:pmid/&rft_els_id=S0360544218325155&rfr_iscdi=true |