Experimental and numerical study of geometrically nonlinear behavior of corrugated laminated composite shells using a nonlinear layer-wise shell FE formulation

•Geometrically nonlinear behavior of corrugated laminated shell is investigated.•Specimens are made by unidirectional glass/epoxy prepreg and autoclave process.•The practical challenges during curing process are discussed.•A new technical material model is also adapted to solve the problem numerical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering structures 2019-04, Vol.184, p.61-73
Hauptverfasser: Soltani, Z., Hosseini Kordkheili, S.A., Kress, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue
container_start_page 61
container_title Engineering structures
container_volume 184
creator Soltani, Z.
Hosseini Kordkheili, S.A.
Kress, G.
description •Geometrically nonlinear behavior of corrugated laminated shell is investigated.•Specimens are made by unidirectional glass/epoxy prepreg and autoclave process.•The practical challenges during curing process are discussed.•A new technical material model is also adapted to solve the problem numerically. This paper presents experimental and numerical studies on the geometrically nonlinear behavior of corrugated laminated composite shells (CLCS) under quasi-static loading along the corrugated direction. A geometrically nonlinear layer-wise shell finite element formulation is adopted to study the behavior of CLCS under large deformation by modeling of incremental different moduli in the tensile and compressive regimes through the thickness, where the spatial location of neutral axis shifts with deformation. A master curve is presented to estimate the value of compressive modulus from given tensile and flexural moduli. Using the prepreg autoclave method, the paper also describes practical challenges in the manufacturing of CLCS and reveals significant influence of thickness on the nonlinear elastic behavior of two thin and moderately thick CLCS. The proprietary layer-wise shell FE formulation is verified with solid-finite-element modeling and employing a developed user material (USERMAT) subroutine in the commercial software ANSYS. Resulting improvements in numerical modelling are assessed in both general and local behaviors.
doi_str_mv 10.1016/j.engstruct.2019.01.077
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2195248192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141029618319242</els_id><sourcerecordid>2195248192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-9cfbfa898de571b3a8ac5a25aa8c5f0aaf148df6996ec2713208e6345457088d3</originalsourceid><addsrcrecordid>eNqFkctuFDEQRS0EEkPgG7DEuhs_-uFeRtEEkCKxCWurxl2eeOS2B9sdmK_hV-PJRIgdq3ro1C1VXUI-ctZyxofPhxbDPpe0mtIKxqeW8ZaN4yuy4WqUzSiFfE02jHe8YWIa3pJ3OR8YY0IptiF_tr-PmNyCoYCnEGYa1qU2TK1yWecTjZbuMS5Ynpv-REMM3gWERHf4AI8upjNjYkrrHgrO1MPiwnNm4nKM2RWk-QG9z3TNLuwp_KPh4YSp-eXyC0Nvt9TGtKweiovhPXljwWf88BKvyI_b7f3N1-bu-5dvN9d3jZGdLM1k7M6CmtSM_ch3EhSYHkQPoExvGYDlnZrtME0DGjFyKZjCQXZ9149MqVlekU8X3WOKP1fMRR_imkJdqQWfetEpPolKjRfKpJhzQquP9XeQTpozfXZDH_RfN_TZDc24rm7UyevLJNYjHh0mnY3DYHB2CSs7R_dfjSc9P5z8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2195248192</pqid></control><display><type>article</type><title>Experimental and numerical study of geometrically nonlinear behavior of corrugated laminated composite shells using a nonlinear layer-wise shell FE formulation</title><source>Elsevier ScienceDirect Journals</source><creator>Soltani, Z. ; Hosseini Kordkheili, S.A. ; Kress, G.</creator><creatorcontrib>Soltani, Z. ; Hosseini Kordkheili, S.A. ; Kress, G.</creatorcontrib><description>•Geometrically nonlinear behavior of corrugated laminated shell is investigated.•Specimens are made by unidirectional glass/epoxy prepreg and autoclave process.•The practical challenges during curing process are discussed.•A new technical material model is also adapted to solve the problem numerically. This paper presents experimental and numerical studies on the geometrically nonlinear behavior of corrugated laminated composite shells (CLCS) under quasi-static loading along the corrugated direction. A geometrically nonlinear layer-wise shell finite element formulation is adopted to study the behavior of CLCS under large deformation by modeling of incremental different moduli in the tensile and compressive regimes through the thickness, where the spatial location of neutral axis shifts with deformation. A master curve is presented to estimate the value of compressive modulus from given tensile and flexural moduli. Using the prepreg autoclave method, the paper also describes practical challenges in the manufacturing of CLCS and reveals significant influence of thickness on the nonlinear elastic behavior of two thin and moderately thick CLCS. The proprietary layer-wise shell FE formulation is verified with solid-finite-element modeling and employing a developed user material (USERMAT) subroutine in the commercial software ANSYS. Resulting improvements in numerical modelling are assessed in both general and local behaviors.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2019.01.077</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Autoclaving ; Composite structures ; Corrugated laminated composite shell ; Deformation ; Finite element method ; Geometrically nonlinear analysis ; Iron ; Layer-wise shell finite element ; Mathematical analysis ; Mathematical models ; Modulus of elasticity ; Multi-modulus material ; Prepreg-autoclave process ; Shells ; Shells (structural forms) ; Thickness</subject><ispartof>Engineering structures, 2019-04, Vol.184, p.61-73</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Apr 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-9cfbfa898de571b3a8ac5a25aa8c5f0aaf148df6996ec2713208e6345457088d3</citedby><cites>FETCH-LOGICAL-c343t-9cfbfa898de571b3a8ac5a25aa8c5f0aaf148df6996ec2713208e6345457088d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141029618319242$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Soltani, Z.</creatorcontrib><creatorcontrib>Hosseini Kordkheili, S.A.</creatorcontrib><creatorcontrib>Kress, G.</creatorcontrib><title>Experimental and numerical study of geometrically nonlinear behavior of corrugated laminated composite shells using a nonlinear layer-wise shell FE formulation</title><title>Engineering structures</title><description>•Geometrically nonlinear behavior of corrugated laminated shell is investigated.•Specimens are made by unidirectional glass/epoxy prepreg and autoclave process.•The practical challenges during curing process are discussed.•A new technical material model is also adapted to solve the problem numerically. This paper presents experimental and numerical studies on the geometrically nonlinear behavior of corrugated laminated composite shells (CLCS) under quasi-static loading along the corrugated direction. A geometrically nonlinear layer-wise shell finite element formulation is adopted to study the behavior of CLCS under large deformation by modeling of incremental different moduli in the tensile and compressive regimes through the thickness, where the spatial location of neutral axis shifts with deformation. A master curve is presented to estimate the value of compressive modulus from given tensile and flexural moduli. Using the prepreg autoclave method, the paper also describes practical challenges in the manufacturing of CLCS and reveals significant influence of thickness on the nonlinear elastic behavior of two thin and moderately thick CLCS. The proprietary layer-wise shell FE formulation is verified with solid-finite-element modeling and employing a developed user material (USERMAT) subroutine in the commercial software ANSYS. Resulting improvements in numerical modelling are assessed in both general and local behaviors.</description><subject>Autoclaving</subject><subject>Composite structures</subject><subject>Corrugated laminated composite shell</subject><subject>Deformation</subject><subject>Finite element method</subject><subject>Geometrically nonlinear analysis</subject><subject>Iron</subject><subject>Layer-wise shell finite element</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modulus of elasticity</subject><subject>Multi-modulus material</subject><subject>Prepreg-autoclave process</subject><subject>Shells</subject><subject>Shells (structural forms)</subject><subject>Thickness</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkctuFDEQRS0EEkPgG7DEuhs_-uFeRtEEkCKxCWurxl2eeOS2B9sdmK_hV-PJRIgdq3ro1C1VXUI-ctZyxofPhxbDPpe0mtIKxqeW8ZaN4yuy4WqUzSiFfE02jHe8YWIa3pJ3OR8YY0IptiF_tr-PmNyCoYCnEGYa1qU2TK1yWecTjZbuMS5Ynpv-REMM3gWERHf4AI8upjNjYkrrHgrO1MPiwnNm4nKM2RWk-QG9z3TNLuwp_KPh4YSp-eXyC0Nvt9TGtKweiovhPXljwWf88BKvyI_b7f3N1-bu-5dvN9d3jZGdLM1k7M6CmtSM_ch3EhSYHkQPoExvGYDlnZrtME0DGjFyKZjCQXZ9149MqVlekU8X3WOKP1fMRR_imkJdqQWfetEpPolKjRfKpJhzQquP9XeQTpozfXZDH_RfN_TZDc24rm7UyevLJNYjHh0mnY3DYHB2CSs7R_dfjSc9P5z8</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Soltani, Z.</creator><creator>Hosseini Kordkheili, S.A.</creator><creator>Kress, G.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>20190401</creationdate><title>Experimental and numerical study of geometrically nonlinear behavior of corrugated laminated composite shells using a nonlinear layer-wise shell FE formulation</title><author>Soltani, Z. ; Hosseini Kordkheili, S.A. ; Kress, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-9cfbfa898de571b3a8ac5a25aa8c5f0aaf148df6996ec2713208e6345457088d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Autoclaving</topic><topic>Composite structures</topic><topic>Corrugated laminated composite shell</topic><topic>Deformation</topic><topic>Finite element method</topic><topic>Geometrically nonlinear analysis</topic><topic>Iron</topic><topic>Layer-wise shell finite element</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modulus of elasticity</topic><topic>Multi-modulus material</topic><topic>Prepreg-autoclave process</topic><topic>Shells</topic><topic>Shells (structural forms)</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soltani, Z.</creatorcontrib><creatorcontrib>Hosseini Kordkheili, S.A.</creatorcontrib><creatorcontrib>Kress, G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soltani, Z.</au><au>Hosseini Kordkheili, S.A.</au><au>Kress, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and numerical study of geometrically nonlinear behavior of corrugated laminated composite shells using a nonlinear layer-wise shell FE formulation</atitle><jtitle>Engineering structures</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>184</volume><spage>61</spage><epage>73</epage><pages>61-73</pages><issn>0141-0296</issn><eissn>1873-7323</eissn><abstract>•Geometrically nonlinear behavior of corrugated laminated shell is investigated.•Specimens are made by unidirectional glass/epoxy prepreg and autoclave process.•The practical challenges during curing process are discussed.•A new technical material model is also adapted to solve the problem numerically. This paper presents experimental and numerical studies on the geometrically nonlinear behavior of corrugated laminated composite shells (CLCS) under quasi-static loading along the corrugated direction. A geometrically nonlinear layer-wise shell finite element formulation is adopted to study the behavior of CLCS under large deformation by modeling of incremental different moduli in the tensile and compressive regimes through the thickness, where the spatial location of neutral axis shifts with deformation. A master curve is presented to estimate the value of compressive modulus from given tensile and flexural moduli. Using the prepreg autoclave method, the paper also describes practical challenges in the manufacturing of CLCS and reveals significant influence of thickness on the nonlinear elastic behavior of two thin and moderately thick CLCS. The proprietary layer-wise shell FE formulation is verified with solid-finite-element modeling and employing a developed user material (USERMAT) subroutine in the commercial software ANSYS. Resulting improvements in numerical modelling are assessed in both general and local behaviors.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2019.01.077</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-0296
ispartof Engineering structures, 2019-04, Vol.184, p.61-73
issn 0141-0296
1873-7323
language eng
recordid cdi_proquest_journals_2195248192
source Elsevier ScienceDirect Journals
subjects Autoclaving
Composite structures
Corrugated laminated composite shell
Deformation
Finite element method
Geometrically nonlinear analysis
Iron
Layer-wise shell finite element
Mathematical analysis
Mathematical models
Modulus of elasticity
Multi-modulus material
Prepreg-autoclave process
Shells
Shells (structural forms)
Thickness
title Experimental and numerical study of geometrically nonlinear behavior of corrugated laminated composite shells using a nonlinear layer-wise shell FE formulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20numerical%20study%20of%20geometrically%20nonlinear%20behavior%20of%20corrugated%20laminated%20composite%20shells%20using%20a%20nonlinear%20layer-wise%20shell%20FE%20formulation&rft.jtitle=Engineering%20structures&rft.au=Soltani,%20Z.&rft.date=2019-04-01&rft.volume=184&rft.spage=61&rft.epage=73&rft.pages=61-73&rft.issn=0141-0296&rft.eissn=1873-7323&rft_id=info:doi/10.1016/j.engstruct.2019.01.077&rft_dat=%3Cproquest_cross%3E2195248192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2195248192&rft_id=info:pmid/&rft_els_id=S0141029618319242&rfr_iscdi=true