Experimental and numerical study of geometrically nonlinear behavior of corrugated laminated composite shells using a nonlinear layer-wise shell FE formulation
•Geometrically nonlinear behavior of corrugated laminated shell is investigated.•Specimens are made by unidirectional glass/epoxy prepreg and autoclave process.•The practical challenges during curing process are discussed.•A new technical material model is also adapted to solve the problem numerical...
Gespeichert in:
Veröffentlicht in: | Engineering structures 2019-04, Vol.184, p.61-73 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 73 |
---|---|
container_issue | |
container_start_page | 61 |
container_title | Engineering structures |
container_volume | 184 |
creator | Soltani, Z. Hosseini Kordkheili, S.A. Kress, G. |
description | •Geometrically nonlinear behavior of corrugated laminated shell is investigated.•Specimens are made by unidirectional glass/epoxy prepreg and autoclave process.•The practical challenges during curing process are discussed.•A new technical material model is also adapted to solve the problem numerically.
This paper presents experimental and numerical studies on the geometrically nonlinear behavior of corrugated laminated composite shells (CLCS) under quasi-static loading along the corrugated direction. A geometrically nonlinear layer-wise shell finite element formulation is adopted to study the behavior of CLCS under large deformation by modeling of incremental different moduli in the tensile and compressive regimes through the thickness, where the spatial location of neutral axis shifts with deformation. A master curve is presented to estimate the value of compressive modulus from given tensile and flexural moduli. Using the prepreg autoclave method, the paper also describes practical challenges in the manufacturing of CLCS and reveals significant influence of thickness on the nonlinear elastic behavior of two thin and moderately thick CLCS. The proprietary layer-wise shell FE formulation is verified with solid-finite-element modeling and employing a developed user material (USERMAT) subroutine in the commercial software ANSYS. Resulting improvements in numerical modelling are assessed in both general and local behaviors. |
doi_str_mv | 10.1016/j.engstruct.2019.01.077 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2195248192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141029618319242</els_id><sourcerecordid>2195248192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-9cfbfa898de571b3a8ac5a25aa8c5f0aaf148df6996ec2713208e6345457088d3</originalsourceid><addsrcrecordid>eNqFkctuFDEQRS0EEkPgG7DEuhs_-uFeRtEEkCKxCWurxl2eeOS2B9sdmK_hV-PJRIgdq3ro1C1VXUI-ctZyxofPhxbDPpe0mtIKxqeW8ZaN4yuy4WqUzSiFfE02jHe8YWIa3pJ3OR8YY0IptiF_tr-PmNyCoYCnEGYa1qU2TK1yWecTjZbuMS5Ynpv-REMM3gWERHf4AI8upjNjYkrrHgrO1MPiwnNm4nKM2RWk-QG9z3TNLuwp_KPh4YSp-eXyC0Nvt9TGtKweiovhPXljwWf88BKvyI_b7f3N1-bu-5dvN9d3jZGdLM1k7M6CmtSM_ch3EhSYHkQPoExvGYDlnZrtME0DGjFyKZjCQXZ9149MqVlekU8X3WOKP1fMRR_imkJdqQWfetEpPolKjRfKpJhzQquP9XeQTpozfXZDH_RfN_TZDc24rm7UyevLJNYjHh0mnY3DYHB2CSs7R_dfjSc9P5z8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2195248192</pqid></control><display><type>article</type><title>Experimental and numerical study of geometrically nonlinear behavior of corrugated laminated composite shells using a nonlinear layer-wise shell FE formulation</title><source>Elsevier ScienceDirect Journals</source><creator>Soltani, Z. ; Hosseini Kordkheili, S.A. ; Kress, G.</creator><creatorcontrib>Soltani, Z. ; Hosseini Kordkheili, S.A. ; Kress, G.</creatorcontrib><description>•Geometrically nonlinear behavior of corrugated laminated shell is investigated.•Specimens are made by unidirectional glass/epoxy prepreg and autoclave process.•The practical challenges during curing process are discussed.•A new technical material model is also adapted to solve the problem numerically.
This paper presents experimental and numerical studies on the geometrically nonlinear behavior of corrugated laminated composite shells (CLCS) under quasi-static loading along the corrugated direction. A geometrically nonlinear layer-wise shell finite element formulation is adopted to study the behavior of CLCS under large deformation by modeling of incremental different moduli in the tensile and compressive regimes through the thickness, where the spatial location of neutral axis shifts with deformation. A master curve is presented to estimate the value of compressive modulus from given tensile and flexural moduli. Using the prepreg autoclave method, the paper also describes practical challenges in the manufacturing of CLCS and reveals significant influence of thickness on the nonlinear elastic behavior of two thin and moderately thick CLCS. The proprietary layer-wise shell FE formulation is verified with solid-finite-element modeling and employing a developed user material (USERMAT) subroutine in the commercial software ANSYS. Resulting improvements in numerical modelling are assessed in both general and local behaviors.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2019.01.077</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Autoclaving ; Composite structures ; Corrugated laminated composite shell ; Deformation ; Finite element method ; Geometrically nonlinear analysis ; Iron ; Layer-wise shell finite element ; Mathematical analysis ; Mathematical models ; Modulus of elasticity ; Multi-modulus material ; Prepreg-autoclave process ; Shells ; Shells (structural forms) ; Thickness</subject><ispartof>Engineering structures, 2019-04, Vol.184, p.61-73</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Apr 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-9cfbfa898de571b3a8ac5a25aa8c5f0aaf148df6996ec2713208e6345457088d3</citedby><cites>FETCH-LOGICAL-c343t-9cfbfa898de571b3a8ac5a25aa8c5f0aaf148df6996ec2713208e6345457088d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141029618319242$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Soltani, Z.</creatorcontrib><creatorcontrib>Hosseini Kordkheili, S.A.</creatorcontrib><creatorcontrib>Kress, G.</creatorcontrib><title>Experimental and numerical study of geometrically nonlinear behavior of corrugated laminated composite shells using a nonlinear layer-wise shell FE formulation</title><title>Engineering structures</title><description>•Geometrically nonlinear behavior of corrugated laminated shell is investigated.•Specimens are made by unidirectional glass/epoxy prepreg and autoclave process.•The practical challenges during curing process are discussed.•A new technical material model is also adapted to solve the problem numerically.
This paper presents experimental and numerical studies on the geometrically nonlinear behavior of corrugated laminated composite shells (CLCS) under quasi-static loading along the corrugated direction. A geometrically nonlinear layer-wise shell finite element formulation is adopted to study the behavior of CLCS under large deformation by modeling of incremental different moduli in the tensile and compressive regimes through the thickness, where the spatial location of neutral axis shifts with deformation. A master curve is presented to estimate the value of compressive modulus from given tensile and flexural moduli. Using the prepreg autoclave method, the paper also describes practical challenges in the manufacturing of CLCS and reveals significant influence of thickness on the nonlinear elastic behavior of two thin and moderately thick CLCS. The proprietary layer-wise shell FE formulation is verified with solid-finite-element modeling and employing a developed user material (USERMAT) subroutine in the commercial software ANSYS. Resulting improvements in numerical modelling are assessed in both general and local behaviors.</description><subject>Autoclaving</subject><subject>Composite structures</subject><subject>Corrugated laminated composite shell</subject><subject>Deformation</subject><subject>Finite element method</subject><subject>Geometrically nonlinear analysis</subject><subject>Iron</subject><subject>Layer-wise shell finite element</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modulus of elasticity</subject><subject>Multi-modulus material</subject><subject>Prepreg-autoclave process</subject><subject>Shells</subject><subject>Shells (structural forms)</subject><subject>Thickness</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkctuFDEQRS0EEkPgG7DEuhs_-uFeRtEEkCKxCWurxl2eeOS2B9sdmK_hV-PJRIgdq3ro1C1VXUI-ctZyxofPhxbDPpe0mtIKxqeW8ZaN4yuy4WqUzSiFfE02jHe8YWIa3pJ3OR8YY0IptiF_tr-PmNyCoYCnEGYa1qU2TK1yWecTjZbuMS5Ynpv-REMM3gWERHf4AI8upjNjYkrrHgrO1MPiwnNm4nKM2RWk-QG9z3TNLuwp_KPh4YSp-eXyC0Nvt9TGtKweiovhPXljwWf88BKvyI_b7f3N1-bu-5dvN9d3jZGdLM1k7M6CmtSM_ch3EhSYHkQPoExvGYDlnZrtME0DGjFyKZjCQXZ9149MqVlekU8X3WOKP1fMRR_imkJdqQWfetEpPolKjRfKpJhzQquP9XeQTpozfXZDH_RfN_TZDc24rm7UyevLJNYjHh0mnY3DYHB2CSs7R_dfjSc9P5z8</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Soltani, Z.</creator><creator>Hosseini Kordkheili, S.A.</creator><creator>Kress, G.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>20190401</creationdate><title>Experimental and numerical study of geometrically nonlinear behavior of corrugated laminated composite shells using a nonlinear layer-wise shell FE formulation</title><author>Soltani, Z. ; Hosseini Kordkheili, S.A. ; Kress, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-9cfbfa898de571b3a8ac5a25aa8c5f0aaf148df6996ec2713208e6345457088d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Autoclaving</topic><topic>Composite structures</topic><topic>Corrugated laminated composite shell</topic><topic>Deformation</topic><topic>Finite element method</topic><topic>Geometrically nonlinear analysis</topic><topic>Iron</topic><topic>Layer-wise shell finite element</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modulus of elasticity</topic><topic>Multi-modulus material</topic><topic>Prepreg-autoclave process</topic><topic>Shells</topic><topic>Shells (structural forms)</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soltani, Z.</creatorcontrib><creatorcontrib>Hosseini Kordkheili, S.A.</creatorcontrib><creatorcontrib>Kress, G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soltani, Z.</au><au>Hosseini Kordkheili, S.A.</au><au>Kress, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and numerical study of geometrically nonlinear behavior of corrugated laminated composite shells using a nonlinear layer-wise shell FE formulation</atitle><jtitle>Engineering structures</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>184</volume><spage>61</spage><epage>73</epage><pages>61-73</pages><issn>0141-0296</issn><eissn>1873-7323</eissn><abstract>•Geometrically nonlinear behavior of corrugated laminated shell is investigated.•Specimens are made by unidirectional glass/epoxy prepreg and autoclave process.•The practical challenges during curing process are discussed.•A new technical material model is also adapted to solve the problem numerically.
This paper presents experimental and numerical studies on the geometrically nonlinear behavior of corrugated laminated composite shells (CLCS) under quasi-static loading along the corrugated direction. A geometrically nonlinear layer-wise shell finite element formulation is adopted to study the behavior of CLCS under large deformation by modeling of incremental different moduli in the tensile and compressive regimes through the thickness, where the spatial location of neutral axis shifts with deformation. A master curve is presented to estimate the value of compressive modulus from given tensile and flexural moduli. Using the prepreg autoclave method, the paper also describes practical challenges in the manufacturing of CLCS and reveals significant influence of thickness on the nonlinear elastic behavior of two thin and moderately thick CLCS. The proprietary layer-wise shell FE formulation is verified with solid-finite-element modeling and employing a developed user material (USERMAT) subroutine in the commercial software ANSYS. Resulting improvements in numerical modelling are assessed in both general and local behaviors.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2019.01.077</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-0296 |
ispartof | Engineering structures, 2019-04, Vol.184, p.61-73 |
issn | 0141-0296 1873-7323 |
language | eng |
recordid | cdi_proquest_journals_2195248192 |
source | Elsevier ScienceDirect Journals |
subjects | Autoclaving Composite structures Corrugated laminated composite shell Deformation Finite element method Geometrically nonlinear analysis Iron Layer-wise shell finite element Mathematical analysis Mathematical models Modulus of elasticity Multi-modulus material Prepreg-autoclave process Shells Shells (structural forms) Thickness |
title | Experimental and numerical study of geometrically nonlinear behavior of corrugated laminated composite shells using a nonlinear layer-wise shell FE formulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20numerical%20study%20of%20geometrically%20nonlinear%20behavior%20of%20corrugated%20laminated%20composite%20shells%20using%20a%20nonlinear%20layer-wise%20shell%20FE%20formulation&rft.jtitle=Engineering%20structures&rft.au=Soltani,%20Z.&rft.date=2019-04-01&rft.volume=184&rft.spage=61&rft.epage=73&rft.pages=61-73&rft.issn=0141-0296&rft.eissn=1873-7323&rft_id=info:doi/10.1016/j.engstruct.2019.01.077&rft_dat=%3Cproquest_cross%3E2195248192%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2195248192&rft_id=info:pmid/&rft_els_id=S0141029618319242&rfr_iscdi=true |