Mixed Pixel Decomposition Based on Extended Fuzzy Clustering for Single Spectral Value Remote Sensing Images
The presence of mixed pixels in remote sensing images is the major issue for accurate classification. In this paper, we have focused on two aspects of mixed pixel problem: firstly, to identify mixed pixels from an image and secondly to label them to their appropriate class. In phase I, extraction of...
Gespeichert in:
Veröffentlicht in: | Journal of the Indian Society of Remote Sensing 2019-03, Vol.47 (3), p.427-437 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 437 |
---|---|
container_issue | 3 |
container_start_page | 427 |
container_title | Journal of the Indian Society of Remote Sensing |
container_volume | 47 |
creator | Kaur, Sumit Bansal, R. K. Mittal, Mamta Goyal, Lalit Mohan Kaur, Iqbaldeep Verma, Amit Son, Le Hoang |
description | The presence of mixed pixels in remote sensing images is the major issue for accurate classification. In this paper, we have focused on two aspects of mixed pixel problem: firstly, to identify mixed pixels from an image and secondly to label them to their appropriate class. In phase I, extraction of mixed pixels has been performed from the RSI images-based super-pixel algorithm and RGB model by using fuzzy C-means (FCM). In phase II, the extracted mixed pixel from phase I has been decomposed to the appropriate class. This new proposed technique is the amalgamation of PSO-FCM (particle swarm optimization-fuzzy C-means) for clustering of mixed pixels and ANN-BPO (artificial neural network-biogeography-based particle swarm optimization) for the classification purpose. Experimental results reveal that the proposed method has improved the accuracy as compared to the existing techniques and succeeds in better classification of the remote sensing images. |
doi_str_mv | 10.1007/s12524-019-00946-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2194644360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2194644360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-897a26a90e7438830f46a64cff92eac4760a6224452a4bfd33746355aedee6113</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFa_gKcFz6v7L5vmqNVqoaJYFW_LmkxKSpKNuxto--ndGsGbl5nHzHsz8EPonNFLRml65RlPuCSUZYTSTCrCD9CIZqkkglJ1GDVPEqIU_ThGJ96v41AmjI9Q_VhtoMDPsdb4FnLbdNZXobItvjE-bqK42wRoi6hn_W63xdO69wFc1a5waR1eRlEDXnaQB2dq_G7qHvALNDbEKbR-b5w3ZgX-FB2VpvZw9tvH6G129zp9IIun-_n0ekFywbJAJllquDIZhVSKyUTQUiqjZF6WGQeTy1RRoziXMuFGfpaFEKlUIkkMFACKMTFGF8PdztmvHnzQa9u7Nr7UnEU6UgpFo4sPrtxZ7x2UunNVY9xWM6r3VPVAVUeq-oeq5jEkhpDv9gTA_Z3-J_UNj016Yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194644360</pqid></control><display><type>article</type><title>Mixed Pixel Decomposition Based on Extended Fuzzy Clustering for Single Spectral Value Remote Sensing Images</title><source>SpringerLink (Online service)</source><creator>Kaur, Sumit ; Bansal, R. K. ; Mittal, Mamta ; Goyal, Lalit Mohan ; Kaur, Iqbaldeep ; Verma, Amit ; Son, Le Hoang</creator><creatorcontrib>Kaur, Sumit ; Bansal, R. K. ; Mittal, Mamta ; Goyal, Lalit Mohan ; Kaur, Iqbaldeep ; Verma, Amit ; Son, Le Hoang</creatorcontrib><description>The presence of mixed pixels in remote sensing images is the major issue for accurate classification. In this paper, we have focused on two aspects of mixed pixel problem: firstly, to identify mixed pixels from an image and secondly to label them to their appropriate class. In phase I, extraction of mixed pixels has been performed from the RSI images-based super-pixel algorithm and RGB model by using fuzzy C-means (FCM). In phase II, the extracted mixed pixel from phase I has been decomposed to the appropriate class. This new proposed technique is the amalgamation of PSO-FCM (particle swarm optimization-fuzzy C-means) for clustering of mixed pixels and ANN-BPO (artificial neural network-biogeography-based particle swarm optimization) for the classification purpose. Experimental results reveal that the proposed method has improved the accuracy as compared to the existing techniques and succeeds in better classification of the remote sensing images.</description><identifier>ISSN: 0255-660X</identifier><identifier>EISSN: 0974-3006</identifier><identifier>DOI: 10.1007/s12524-019-00946-2</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Algorithms ; Artificial neural networks ; Biogeography ; Classification ; Clustering ; Decomposition ; Detection ; Earth and Environmental Science ; Earth Sciences ; Image classification ; Neural networks ; Particle swarm optimization ; Pixels ; Remote sensing ; Remote Sensing/Photogrammetry ; Research Article</subject><ispartof>Journal of the Indian Society of Remote Sensing, 2019-03, Vol.47 (3), p.427-437</ispartof><rights>Indian Society of Remote Sensing 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-897a26a90e7438830f46a64cff92eac4760a6224452a4bfd33746355aedee6113</citedby><cites>FETCH-LOGICAL-c319t-897a26a90e7438830f46a64cff92eac4760a6224452a4bfd33746355aedee6113</cites><orcidid>0000-0001-6356-0046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12524-019-00946-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12524-019-00946-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kaur, Sumit</creatorcontrib><creatorcontrib>Bansal, R. K.</creatorcontrib><creatorcontrib>Mittal, Mamta</creatorcontrib><creatorcontrib>Goyal, Lalit Mohan</creatorcontrib><creatorcontrib>Kaur, Iqbaldeep</creatorcontrib><creatorcontrib>Verma, Amit</creatorcontrib><creatorcontrib>Son, Le Hoang</creatorcontrib><title>Mixed Pixel Decomposition Based on Extended Fuzzy Clustering for Single Spectral Value Remote Sensing Images</title><title>Journal of the Indian Society of Remote Sensing</title><addtitle>J Indian Soc Remote Sens</addtitle><description>The presence of mixed pixels in remote sensing images is the major issue for accurate classification. In this paper, we have focused on two aspects of mixed pixel problem: firstly, to identify mixed pixels from an image and secondly to label them to their appropriate class. In phase I, extraction of mixed pixels has been performed from the RSI images-based super-pixel algorithm and RGB model by using fuzzy C-means (FCM). In phase II, the extracted mixed pixel from phase I has been decomposed to the appropriate class. This new proposed technique is the amalgamation of PSO-FCM (particle swarm optimization-fuzzy C-means) for clustering of mixed pixels and ANN-BPO (artificial neural network-biogeography-based particle swarm optimization) for the classification purpose. Experimental results reveal that the proposed method has improved the accuracy as compared to the existing techniques and succeeds in better classification of the remote sensing images.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Biogeography</subject><subject>Classification</subject><subject>Clustering</subject><subject>Decomposition</subject><subject>Detection</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Image classification</subject><subject>Neural networks</subject><subject>Particle swarm optimization</subject><subject>Pixels</subject><subject>Remote sensing</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Research Article</subject><issn>0255-660X</issn><issn>0974-3006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRsFa_gKcFz6v7L5vmqNVqoaJYFW_LmkxKSpKNuxto--ndGsGbl5nHzHsz8EPonNFLRml65RlPuCSUZYTSTCrCD9CIZqkkglJ1GDVPEqIU_ThGJ96v41AmjI9Q_VhtoMDPsdb4FnLbdNZXobItvjE-bqK42wRoi6hn_W63xdO69wFc1a5waR1eRlEDXnaQB2dq_G7qHvALNDbEKbR-b5w3ZgX-FB2VpvZw9tvH6G129zp9IIun-_n0ekFywbJAJllquDIZhVSKyUTQUiqjZF6WGQeTy1RRoziXMuFGfpaFEKlUIkkMFACKMTFGF8PdztmvHnzQa9u7Nr7UnEU6UgpFo4sPrtxZ7x2UunNVY9xWM6r3VPVAVUeq-oeq5jEkhpDv9gTA_Z3-J_UNj016Yw</recordid><startdate>20190307</startdate><enddate>20190307</enddate><creator>Kaur, Sumit</creator><creator>Bansal, R. K.</creator><creator>Mittal, Mamta</creator><creator>Goyal, Lalit Mohan</creator><creator>Kaur, Iqbaldeep</creator><creator>Verma, Amit</creator><creator>Son, Le Hoang</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6356-0046</orcidid></search><sort><creationdate>20190307</creationdate><title>Mixed Pixel Decomposition Based on Extended Fuzzy Clustering for Single Spectral Value Remote Sensing Images</title><author>Kaur, Sumit ; Bansal, R. K. ; Mittal, Mamta ; Goyal, Lalit Mohan ; Kaur, Iqbaldeep ; Verma, Amit ; Son, Le Hoang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-897a26a90e7438830f46a64cff92eac4760a6224452a4bfd33746355aedee6113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Biogeography</topic><topic>Classification</topic><topic>Clustering</topic><topic>Decomposition</topic><topic>Detection</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Image classification</topic><topic>Neural networks</topic><topic>Particle swarm optimization</topic><topic>Pixels</topic><topic>Remote sensing</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaur, Sumit</creatorcontrib><creatorcontrib>Bansal, R. K.</creatorcontrib><creatorcontrib>Mittal, Mamta</creatorcontrib><creatorcontrib>Goyal, Lalit Mohan</creatorcontrib><creatorcontrib>Kaur, Iqbaldeep</creatorcontrib><creatorcontrib>Verma, Amit</creatorcontrib><creatorcontrib>Son, Le Hoang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Indian Society of Remote Sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaur, Sumit</au><au>Bansal, R. K.</au><au>Mittal, Mamta</au><au>Goyal, Lalit Mohan</au><au>Kaur, Iqbaldeep</au><au>Verma, Amit</au><au>Son, Le Hoang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed Pixel Decomposition Based on Extended Fuzzy Clustering for Single Spectral Value Remote Sensing Images</atitle><jtitle>Journal of the Indian Society of Remote Sensing</jtitle><stitle>J Indian Soc Remote Sens</stitle><date>2019-03-07</date><risdate>2019</risdate><volume>47</volume><issue>3</issue><spage>427</spage><epage>437</epage><pages>427-437</pages><issn>0255-660X</issn><eissn>0974-3006</eissn><abstract>The presence of mixed pixels in remote sensing images is the major issue for accurate classification. In this paper, we have focused on two aspects of mixed pixel problem: firstly, to identify mixed pixels from an image and secondly to label them to their appropriate class. In phase I, extraction of mixed pixels has been performed from the RSI images-based super-pixel algorithm and RGB model by using fuzzy C-means (FCM). In phase II, the extracted mixed pixel from phase I has been decomposed to the appropriate class. This new proposed technique is the amalgamation of PSO-FCM (particle swarm optimization-fuzzy C-means) for clustering of mixed pixels and ANN-BPO (artificial neural network-biogeography-based particle swarm optimization) for the classification purpose. Experimental results reveal that the proposed method has improved the accuracy as compared to the existing techniques and succeeds in better classification of the remote sensing images.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12524-019-00946-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6356-0046</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0255-660X |
ispartof | Journal of the Indian Society of Remote Sensing, 2019-03, Vol.47 (3), p.427-437 |
issn | 0255-660X 0974-3006 |
language | eng |
recordid | cdi_proquest_journals_2194644360 |
source | SpringerLink (Online service) |
subjects | Algorithms Artificial neural networks Biogeography Classification Clustering Decomposition Detection Earth and Environmental Science Earth Sciences Image classification Neural networks Particle swarm optimization Pixels Remote sensing Remote Sensing/Photogrammetry Research Article |
title | Mixed Pixel Decomposition Based on Extended Fuzzy Clustering for Single Spectral Value Remote Sensing Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20Pixel%20Decomposition%20Based%20on%20Extended%20Fuzzy%20Clustering%20for%20Single%20Spectral%20Value%20Remote%20Sensing%20Images&rft.jtitle=Journal%20of%20the%20Indian%20Society%20of%20Remote%20Sensing&rft.au=Kaur,%20Sumit&rft.date=2019-03-07&rft.volume=47&rft.issue=3&rft.spage=427&rft.epage=437&rft.pages=427-437&rft.issn=0255-660X&rft.eissn=0974-3006&rft_id=info:doi/10.1007/s12524-019-00946-2&rft_dat=%3Cproquest_cross%3E2194644360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194644360&rft_id=info:pmid/&rfr_iscdi=true |