Mixed Pixel Decomposition Based on Extended Fuzzy Clustering for Single Spectral Value Remote Sensing Images

The presence of mixed pixels in remote sensing images is the major issue for accurate classification. In this paper, we have focused on two aspects of mixed pixel problem: firstly, to identify mixed pixels from an image and secondly to label them to their appropriate class. In phase I, extraction of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Indian Society of Remote Sensing 2019-03, Vol.47 (3), p.427-437
Hauptverfasser: Kaur, Sumit, Bansal, R. K., Mittal, Mamta, Goyal, Lalit Mohan, Kaur, Iqbaldeep, Verma, Amit, Son, Le Hoang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 437
container_issue 3
container_start_page 427
container_title Journal of the Indian Society of Remote Sensing
container_volume 47
creator Kaur, Sumit
Bansal, R. K.
Mittal, Mamta
Goyal, Lalit Mohan
Kaur, Iqbaldeep
Verma, Amit
Son, Le Hoang
description The presence of mixed pixels in remote sensing images is the major issue for accurate classification. In this paper, we have focused on two aspects of mixed pixel problem: firstly, to identify mixed pixels from an image and secondly to label them to their appropriate class. In phase I, extraction of mixed pixels has been performed from the RSI images-based super-pixel algorithm and RGB model by using fuzzy C-means (FCM). In phase II, the extracted mixed pixel from phase I has been decomposed to the appropriate class. This new proposed technique is the amalgamation of PSO-FCM (particle swarm optimization-fuzzy C-means) for clustering of mixed pixels and ANN-BPO (artificial neural network-biogeography-based particle swarm optimization) for the classification purpose. Experimental results reveal that the proposed method has improved the accuracy as compared to the existing techniques and succeeds in better classification of the remote sensing images.
doi_str_mv 10.1007/s12524-019-00946-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2194644360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2194644360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-897a26a90e7438830f46a64cff92eac4760a6224452a4bfd33746355aedee6113</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFa_gKcFz6v7L5vmqNVqoaJYFW_LmkxKSpKNuxto--ndGsGbl5nHzHsz8EPonNFLRml65RlPuCSUZYTSTCrCD9CIZqkkglJ1GDVPEqIU_ThGJ96v41AmjI9Q_VhtoMDPsdb4FnLbdNZXobItvjE-bqK42wRoi6hn_W63xdO69wFc1a5waR1eRlEDXnaQB2dq_G7qHvALNDbEKbR-b5w3ZgX-FB2VpvZw9tvH6G129zp9IIun-_n0ekFywbJAJllquDIZhVSKyUTQUiqjZF6WGQeTy1RRoziXMuFGfpaFEKlUIkkMFACKMTFGF8PdztmvHnzQa9u7Nr7UnEU6UgpFo4sPrtxZ7x2UunNVY9xWM6r3VPVAVUeq-oeq5jEkhpDv9gTA_Z3-J_UNj016Yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194644360</pqid></control><display><type>article</type><title>Mixed Pixel Decomposition Based on Extended Fuzzy Clustering for Single Spectral Value Remote Sensing Images</title><source>SpringerLink (Online service)</source><creator>Kaur, Sumit ; Bansal, R. K. ; Mittal, Mamta ; Goyal, Lalit Mohan ; Kaur, Iqbaldeep ; Verma, Amit ; Son, Le Hoang</creator><creatorcontrib>Kaur, Sumit ; Bansal, R. K. ; Mittal, Mamta ; Goyal, Lalit Mohan ; Kaur, Iqbaldeep ; Verma, Amit ; Son, Le Hoang</creatorcontrib><description>The presence of mixed pixels in remote sensing images is the major issue for accurate classification. In this paper, we have focused on two aspects of mixed pixel problem: firstly, to identify mixed pixels from an image and secondly to label them to their appropriate class. In phase I, extraction of mixed pixels has been performed from the RSI images-based super-pixel algorithm and RGB model by using fuzzy C-means (FCM). In phase II, the extracted mixed pixel from phase I has been decomposed to the appropriate class. This new proposed technique is the amalgamation of PSO-FCM (particle swarm optimization-fuzzy C-means) for clustering of mixed pixels and ANN-BPO (artificial neural network-biogeography-based particle swarm optimization) for the classification purpose. Experimental results reveal that the proposed method has improved the accuracy as compared to the existing techniques and succeeds in better classification of the remote sensing images.</description><identifier>ISSN: 0255-660X</identifier><identifier>EISSN: 0974-3006</identifier><identifier>DOI: 10.1007/s12524-019-00946-2</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Algorithms ; Artificial neural networks ; Biogeography ; Classification ; Clustering ; Decomposition ; Detection ; Earth and Environmental Science ; Earth Sciences ; Image classification ; Neural networks ; Particle swarm optimization ; Pixels ; Remote sensing ; Remote Sensing/Photogrammetry ; Research Article</subject><ispartof>Journal of the Indian Society of Remote Sensing, 2019-03, Vol.47 (3), p.427-437</ispartof><rights>Indian Society of Remote Sensing 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-897a26a90e7438830f46a64cff92eac4760a6224452a4bfd33746355aedee6113</citedby><cites>FETCH-LOGICAL-c319t-897a26a90e7438830f46a64cff92eac4760a6224452a4bfd33746355aedee6113</cites><orcidid>0000-0001-6356-0046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12524-019-00946-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12524-019-00946-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kaur, Sumit</creatorcontrib><creatorcontrib>Bansal, R. K.</creatorcontrib><creatorcontrib>Mittal, Mamta</creatorcontrib><creatorcontrib>Goyal, Lalit Mohan</creatorcontrib><creatorcontrib>Kaur, Iqbaldeep</creatorcontrib><creatorcontrib>Verma, Amit</creatorcontrib><creatorcontrib>Son, Le Hoang</creatorcontrib><title>Mixed Pixel Decomposition Based on Extended Fuzzy Clustering for Single Spectral Value Remote Sensing Images</title><title>Journal of the Indian Society of Remote Sensing</title><addtitle>J Indian Soc Remote Sens</addtitle><description>The presence of mixed pixels in remote sensing images is the major issue for accurate classification. In this paper, we have focused on two aspects of mixed pixel problem: firstly, to identify mixed pixels from an image and secondly to label them to their appropriate class. In phase I, extraction of mixed pixels has been performed from the RSI images-based super-pixel algorithm and RGB model by using fuzzy C-means (FCM). In phase II, the extracted mixed pixel from phase I has been decomposed to the appropriate class. This new proposed technique is the amalgamation of PSO-FCM (particle swarm optimization-fuzzy C-means) for clustering of mixed pixels and ANN-BPO (artificial neural network-biogeography-based particle swarm optimization) for the classification purpose. Experimental results reveal that the proposed method has improved the accuracy as compared to the existing techniques and succeeds in better classification of the remote sensing images.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Biogeography</subject><subject>Classification</subject><subject>Clustering</subject><subject>Decomposition</subject><subject>Detection</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Image classification</subject><subject>Neural networks</subject><subject>Particle swarm optimization</subject><subject>Pixels</subject><subject>Remote sensing</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Research Article</subject><issn>0255-660X</issn><issn>0974-3006</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRsFa_gKcFz6v7L5vmqNVqoaJYFW_LmkxKSpKNuxto--ndGsGbl5nHzHsz8EPonNFLRml65RlPuCSUZYTSTCrCD9CIZqkkglJ1GDVPEqIU_ThGJ96v41AmjI9Q_VhtoMDPsdb4FnLbdNZXobItvjE-bqK42wRoi6hn_W63xdO69wFc1a5waR1eRlEDXnaQB2dq_G7qHvALNDbEKbR-b5w3ZgX-FB2VpvZw9tvH6G129zp9IIun-_n0ekFywbJAJllquDIZhVSKyUTQUiqjZF6WGQeTy1RRoziXMuFGfpaFEKlUIkkMFACKMTFGF8PdztmvHnzQa9u7Nr7UnEU6UgpFo4sPrtxZ7x2UunNVY9xWM6r3VPVAVUeq-oeq5jEkhpDv9gTA_Z3-J_UNj016Yw</recordid><startdate>20190307</startdate><enddate>20190307</enddate><creator>Kaur, Sumit</creator><creator>Bansal, R. K.</creator><creator>Mittal, Mamta</creator><creator>Goyal, Lalit Mohan</creator><creator>Kaur, Iqbaldeep</creator><creator>Verma, Amit</creator><creator>Son, Le Hoang</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6356-0046</orcidid></search><sort><creationdate>20190307</creationdate><title>Mixed Pixel Decomposition Based on Extended Fuzzy Clustering for Single Spectral Value Remote Sensing Images</title><author>Kaur, Sumit ; Bansal, R. K. ; Mittal, Mamta ; Goyal, Lalit Mohan ; Kaur, Iqbaldeep ; Verma, Amit ; Son, Le Hoang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-897a26a90e7438830f46a64cff92eac4760a6224452a4bfd33746355aedee6113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Biogeography</topic><topic>Classification</topic><topic>Clustering</topic><topic>Decomposition</topic><topic>Detection</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Image classification</topic><topic>Neural networks</topic><topic>Particle swarm optimization</topic><topic>Pixels</topic><topic>Remote sensing</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaur, Sumit</creatorcontrib><creatorcontrib>Bansal, R. K.</creatorcontrib><creatorcontrib>Mittal, Mamta</creatorcontrib><creatorcontrib>Goyal, Lalit Mohan</creatorcontrib><creatorcontrib>Kaur, Iqbaldeep</creatorcontrib><creatorcontrib>Verma, Amit</creatorcontrib><creatorcontrib>Son, Le Hoang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Indian Society of Remote Sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaur, Sumit</au><au>Bansal, R. K.</au><au>Mittal, Mamta</au><au>Goyal, Lalit Mohan</au><au>Kaur, Iqbaldeep</au><au>Verma, Amit</au><au>Son, Le Hoang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed Pixel Decomposition Based on Extended Fuzzy Clustering for Single Spectral Value Remote Sensing Images</atitle><jtitle>Journal of the Indian Society of Remote Sensing</jtitle><stitle>J Indian Soc Remote Sens</stitle><date>2019-03-07</date><risdate>2019</risdate><volume>47</volume><issue>3</issue><spage>427</spage><epage>437</epage><pages>427-437</pages><issn>0255-660X</issn><eissn>0974-3006</eissn><abstract>The presence of mixed pixels in remote sensing images is the major issue for accurate classification. In this paper, we have focused on two aspects of mixed pixel problem: firstly, to identify mixed pixels from an image and secondly to label them to their appropriate class. In phase I, extraction of mixed pixels has been performed from the RSI images-based super-pixel algorithm and RGB model by using fuzzy C-means (FCM). In phase II, the extracted mixed pixel from phase I has been decomposed to the appropriate class. This new proposed technique is the amalgamation of PSO-FCM (particle swarm optimization-fuzzy C-means) for clustering of mixed pixels and ANN-BPO (artificial neural network-biogeography-based particle swarm optimization) for the classification purpose. Experimental results reveal that the proposed method has improved the accuracy as compared to the existing techniques and succeeds in better classification of the remote sensing images.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12524-019-00946-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6356-0046</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0255-660X
ispartof Journal of the Indian Society of Remote Sensing, 2019-03, Vol.47 (3), p.427-437
issn 0255-660X
0974-3006
language eng
recordid cdi_proquest_journals_2194644360
source SpringerLink (Online service)
subjects Algorithms
Artificial neural networks
Biogeography
Classification
Clustering
Decomposition
Detection
Earth and Environmental Science
Earth Sciences
Image classification
Neural networks
Particle swarm optimization
Pixels
Remote sensing
Remote Sensing/Photogrammetry
Research Article
title Mixed Pixel Decomposition Based on Extended Fuzzy Clustering for Single Spectral Value Remote Sensing Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20Pixel%20Decomposition%20Based%20on%20Extended%20Fuzzy%20Clustering%20for%20Single%20Spectral%20Value%20Remote%20Sensing%20Images&rft.jtitle=Journal%20of%20the%20Indian%20Society%20of%20Remote%20Sensing&rft.au=Kaur,%20Sumit&rft.date=2019-03-07&rft.volume=47&rft.issue=3&rft.spage=427&rft.epage=437&rft.pages=427-437&rft.issn=0255-660X&rft.eissn=0974-3006&rft_id=info:doi/10.1007/s12524-019-00946-2&rft_dat=%3Cproquest_cross%3E2194644360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194644360&rft_id=info:pmid/&rfr_iscdi=true