Semantic segmentation-based parking space detection with standalone around view monitoring system
An auto-parking system is one of the promising technologies to reduce accidents and enhance driver convenience in parking lots. To accomplish collision-free parking, precise and robust parking space detection is required. However, harsh conditions such as varied illumination in outdoor parking lots...
Gespeichert in:
Veröffentlicht in: | Machine vision and applications 2019-03, Vol.30 (2), p.309-319 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 319 |
---|---|
container_issue | 2 |
container_start_page | 309 |
container_title | Machine vision and applications |
container_volume | 30 |
creator | Jang, Chulhoon Sunwoo, Myoungho |
description | An auto-parking system is one of the promising technologies to reduce accidents and enhance driver convenience in parking lots. To accomplish collision-free parking, precise and robust parking space detection is required. However, harsh conditions such as varied illumination in outdoor parking lots and high reflection in indoor parking lots degrade the reliability of parking space detection. In this paper, we propose a unified structure for parking space detection to detect parking slot markings and static obstacles. A fully convolutional network for semantic segmentation can immediately identify free spaces, slot markings, vehicles, and other objects without using a range sensor or 3D reconstruction algorithm. Furthermore, a vertical grid encoding method can simultaneously detect unoccupied slots identified by parking slot markings and empty spaces created by surrounding static objects without sensor fusion. Experimental results show the robustness of the proposed method in various different parking scenarios. Even in challenging conditions such as dark shaded or high-glare areas, the detection performance maintains a precision rate of 96.81% and recall rate of 97.80%. |
doi_str_mv | 10.1007/s00138-018-0986-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2194644224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2194644224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3f8010caa119031ad6d7dfe6cc60aa3cc8aa0433f97734355385b8225e4302383</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssQ6MH0mcJap4SZVYAGtr6jglpbGD7VK1X09KkFixGM1Ic-8dzSHkksE1AyhvIgATKgM2VKWKbH9EJkwKnrGyqI7JBKphVlDxU3IW4woAZFnKCcEX26FLraHRLjvrEqbWu2yB0da0x_DRuiWNPRpLa5usOWzptk3vNCZ0Na69sxSD37iafrV2Szvv2uTDj20Xk-3OyUmD62gvfvuUvN3fvc4es_nzw9Psdp4ZwYqUiUYBA4PIWAWCYV3UZd3YwpgCEIUxChGkEE1VlkKKPBcqXyjOcysFcKHElFyNuX3wnxsbk175TXDDSc1ZJQspOZeDio0qE3yMwTa6D22HYacZ6ANJPZLUA0l9IKn3g4ePntgf_rLhL_l_0zeLh3gU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194644224</pqid></control><display><type>article</type><title>Semantic segmentation-based parking space detection with standalone around view monitoring system</title><source>SpringerNature Complete Journals</source><creator>Jang, Chulhoon ; Sunwoo, Myoungho</creator><creatorcontrib>Jang, Chulhoon ; Sunwoo, Myoungho</creatorcontrib><description>An auto-parking system is one of the promising technologies to reduce accidents and enhance driver convenience in parking lots. To accomplish collision-free parking, precise and robust parking space detection is required. However, harsh conditions such as varied illumination in outdoor parking lots and high reflection in indoor parking lots degrade the reliability of parking space detection. In this paper, we propose a unified structure for parking space detection to detect parking slot markings and static obstacles. A fully convolutional network for semantic segmentation can immediately identify free spaces, slot markings, vehicles, and other objects without using a range sensor or 3D reconstruction algorithm. Furthermore, a vertical grid encoding method can simultaneously detect unoccupied slots identified by parking slot markings and empty spaces created by surrounding static objects without sensor fusion. Experimental results show the robustness of the proposed method in various different parking scenarios. Even in challenging conditions such as dark shaded or high-glare areas, the detection performance maintains a precision rate of 96.81% and recall rate of 97.80%.</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s00138-018-0986-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accident reconstruction ; Algorithms ; Artificial neural networks ; Collision avoidance ; Communications Engineering ; Computer Science ; Image Processing and Computer Vision ; Networks ; Object recognition ; Original Paper ; Parking ; Parking facilities ; Pattern Recognition ; Semantic segmentation ; Semantics ; Static objects ; Vision systems</subject><ispartof>Machine vision and applications, 2019-03, Vol.30 (2), p.309-319</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3f8010caa119031ad6d7dfe6cc60aa3cc8aa0433f97734355385b8225e4302383</citedby><cites>FETCH-LOGICAL-c316t-3f8010caa119031ad6d7dfe6cc60aa3cc8aa0433f97734355385b8225e4302383</cites><orcidid>0000-0002-3505-6675 ; 0000-0001-9432-3473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00138-018-0986-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00138-018-0986-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jang, Chulhoon</creatorcontrib><creatorcontrib>Sunwoo, Myoungho</creatorcontrib><title>Semantic segmentation-based parking space detection with standalone around view monitoring system</title><title>Machine vision and applications</title><addtitle>Machine Vision and Applications</addtitle><description>An auto-parking system is one of the promising technologies to reduce accidents and enhance driver convenience in parking lots. To accomplish collision-free parking, precise and robust parking space detection is required. However, harsh conditions such as varied illumination in outdoor parking lots and high reflection in indoor parking lots degrade the reliability of parking space detection. In this paper, we propose a unified structure for parking space detection to detect parking slot markings and static obstacles. A fully convolutional network for semantic segmentation can immediately identify free spaces, slot markings, vehicles, and other objects without using a range sensor or 3D reconstruction algorithm. Furthermore, a vertical grid encoding method can simultaneously detect unoccupied slots identified by parking slot markings and empty spaces created by surrounding static objects without sensor fusion. Experimental results show the robustness of the proposed method in various different parking scenarios. Even in challenging conditions such as dark shaded or high-glare areas, the detection performance maintains a precision rate of 96.81% and recall rate of 97.80%.</description><subject>Accident reconstruction</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Collision avoidance</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Networks</subject><subject>Object recognition</subject><subject>Original Paper</subject><subject>Parking</subject><subject>Parking facilities</subject><subject>Pattern Recognition</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Static objects</subject><subject>Vision systems</subject><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssQ6MH0mcJap4SZVYAGtr6jglpbGD7VK1X09KkFixGM1Ic-8dzSHkksE1AyhvIgATKgM2VKWKbH9EJkwKnrGyqI7JBKphVlDxU3IW4woAZFnKCcEX26FLraHRLjvrEqbWu2yB0da0x_DRuiWNPRpLa5usOWzptk3vNCZ0Na69sxSD37iafrV2Szvv2uTDj20Xk-3OyUmD62gvfvuUvN3fvc4es_nzw9Psdp4ZwYqUiUYBA4PIWAWCYV3UZd3YwpgCEIUxChGkEE1VlkKKPBcqXyjOcysFcKHElFyNuX3wnxsbk175TXDDSc1ZJQspOZeDio0qE3yMwTa6D22HYacZ6ANJPZLUA0l9IKn3g4ePntgf_rLhL_l_0zeLh3gU</recordid><startdate>20190304</startdate><enddate>20190304</enddate><creator>Jang, Chulhoon</creator><creator>Sunwoo, Myoungho</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3505-6675</orcidid><orcidid>https://orcid.org/0000-0001-9432-3473</orcidid></search><sort><creationdate>20190304</creationdate><title>Semantic segmentation-based parking space detection with standalone around view monitoring system</title><author>Jang, Chulhoon ; Sunwoo, Myoungho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3f8010caa119031ad6d7dfe6cc60aa3cc8aa0433f97734355385b8225e4302383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accident reconstruction</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Collision avoidance</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Networks</topic><topic>Object recognition</topic><topic>Original Paper</topic><topic>Parking</topic><topic>Parking facilities</topic><topic>Pattern Recognition</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Static objects</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Chulhoon</creatorcontrib><creatorcontrib>Sunwoo, Myoungho</creatorcontrib><collection>CrossRef</collection><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Chulhoon</au><au>Sunwoo, Myoungho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semantic segmentation-based parking space detection with standalone around view monitoring system</atitle><jtitle>Machine vision and applications</jtitle><stitle>Machine Vision and Applications</stitle><date>2019-03-04</date><risdate>2019</risdate><volume>30</volume><issue>2</issue><spage>309</spage><epage>319</epage><pages>309-319</pages><issn>0932-8092</issn><eissn>1432-1769</eissn><abstract>An auto-parking system is one of the promising technologies to reduce accidents and enhance driver convenience in parking lots. To accomplish collision-free parking, precise and robust parking space detection is required. However, harsh conditions such as varied illumination in outdoor parking lots and high reflection in indoor parking lots degrade the reliability of parking space detection. In this paper, we propose a unified structure for parking space detection to detect parking slot markings and static obstacles. A fully convolutional network for semantic segmentation can immediately identify free spaces, slot markings, vehicles, and other objects without using a range sensor or 3D reconstruction algorithm. Furthermore, a vertical grid encoding method can simultaneously detect unoccupied slots identified by parking slot markings and empty spaces created by surrounding static objects without sensor fusion. Experimental results show the robustness of the proposed method in various different parking scenarios. Even in challenging conditions such as dark shaded or high-glare areas, the detection performance maintains a precision rate of 96.81% and recall rate of 97.80%.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00138-018-0986-z</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3505-6675</orcidid><orcidid>https://orcid.org/0000-0001-9432-3473</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-8092 |
ispartof | Machine vision and applications, 2019-03, Vol.30 (2), p.309-319 |
issn | 0932-8092 1432-1769 |
language | eng |
recordid | cdi_proquest_journals_2194644224 |
source | SpringerNature Complete Journals |
subjects | Accident reconstruction Algorithms Artificial neural networks Collision avoidance Communications Engineering Computer Science Image Processing and Computer Vision Networks Object recognition Original Paper Parking Parking facilities Pattern Recognition Semantic segmentation Semantics Static objects Vision systems |
title | Semantic segmentation-based parking space detection with standalone around view monitoring system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semantic%20segmentation-based%20parking%20space%20detection%20with%20standalone%20around%20view%20monitoring%20system&rft.jtitle=Machine%20vision%20and%20applications&rft.au=Jang,%20Chulhoon&rft.date=2019-03-04&rft.volume=30&rft.issue=2&rft.spage=309&rft.epage=319&rft.pages=309-319&rft.issn=0932-8092&rft.eissn=1432-1769&rft_id=info:doi/10.1007/s00138-018-0986-z&rft_dat=%3Cproquest_cross%3E2194644224%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194644224&rft_id=info:pmid/&rfr_iscdi=true |